Flash storage

COS 518: Advanced Computer Systems
Lecture 8

Michael Freedman

Flash: Storing many bits

10

Flash: Bit vs. page-level access

- NOR flash
 - Cells connected in parallel to bit lines
 - Cells can be read and written to individually
- NAND flash
 - Cells connected in series, consuming less space
 - Smaller area needed to implement certain capacity
 - > Reduce cost per bit, increase max chip capacity
 - Cells can only be written and read at the page level

NAND Flash: Architecture

• Architecture:

- Pages: 8-16 KB, assembled into

- Blocks: 4-8 MB

Block 1000 (data)

DIOCK TOOO (data)	
PPN	data
0	х
1	у
2	z
3	

Block 2000 (free)

PPN	data
0	
1	
2	
3	

12

NAND Flash: Reading / writing

- · Always read an entire page:
 - Can only read entire aligned page from SSD
- · Always write an entire page:
 - To change single byte, need to write entire page
- · Pages cannot be overwritten
 - Page can be written only if the "free" state.
 - Updating: Read page to internal register, modify, then write to free page
- · Erases are aligned on block size
 - To make a page "free", need to erase it
 - Erasures can only occur at block boundary

13

Why Erase then Write? Hardware limitation

- A freshly erased, blank page of NAND flash has no charged gates; it stores all 1s.
- 1s can be turned into 0s at the page level, but one-way process.
 - Turning 0s back into 1s is a difficult operation b/c it uses high voltages.
 - Difficult to confine the effect only to desired cells; high voltages can change adjacent cells.

Implication: Buffer small writes

- To maximize throughput:
 - Keep small writes into a buffer in RAM
 - Perform large batch write when buffer full
- Suited well for log-structured write (e.g., LSM trees)

SSD architecture

SSD: Solid State Driver - Host Interface Logic - SSD Controller - RAM buffer

- RAM Buffer
- Flash Memory Package

Last twist

• Disk lifetime: each page can only be written some fixed number of times:

SLC: 100,000 P/E cyclesMLC: 3,000 P/E cyclesTLC: 100 P/E cycles

- When blocks get bad, take them out of rotation
 - Need indirection layer to not use bad pages
- Want to load balance writes over pages!
 - FTL: Flash-Translation Layer for "wear leveling"

