Spanner

Storage insights

2PL & OCC = strict serialization

COS 518: Advanced Computer Systems
Lecture 6

Michael Freedman

* Provides semantics as if only one transaction was
running on DB at time, in serial order

+ Real-time guarantees

« 2PL: Pessimistically get all the locks first

» OCC: Optimistically create copies, but then
recheck all read + written items before commit

Multi-version
concurrency control

Generalize use of multiple versions of objects

Multi-version concurrency control

+ Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

* Prior example of MVCC:

I Write Request | | Dirty Read | Clean Read
AY
\\i[K,Vzl Kl A “__.,;-_;;::2:2'.2'.'.:22:2:;;:
,// \\\ // B e N G

/ \ { \
|\ HEAD - -> replica |- —>

\\\7/ \\,,,7/
K: Vq,V, K:Vy,V, : kv,

Multi-version concurrency control

MVCC Intuition

* Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

» Unlike 2PL/OCC, reads never rejected

* Occasionally run garbage collection to clean up

+ Spilit transaction into read set and write set
— All reads execute as if one “snapshot”

— All writes execute as if one later “snapshot

* Yields snapshot isolation < serializability

Serializability vs. Snapshot isolation

Timestamps in MVCC

* Intuition: Bag of marbles: %2 white, %2 black

« Transactions:
— T1: Change all white marbles to black marbles
— T2: Change all black marbles to white marbles

« Serializability (2PL, OCC)
- T1->T2 or T2->T1
— In either case, bag is either ALL white or ALL black

* Snapshot isolation (MVCC)
- T1—>T2 or T2—T1 or T1]| T2
— Bagis ALL white, ALL black, or 2 white % black

+ Transactions are assigned timestamps, which may
get assigned to objects those txns read/write

 Every object version O, has both read and write TS
— ReadTS: Largest timestamp of txn that reads Oy,
— WriteTS: Timestamp of txn that wrote O,

Executing transaction T in MVCC

Find version of object O to read:

— # Determine the last version written before read snapshot time
— Find Oy s.t. max { WriteTS(Oy/) | WriteTS(O,)) <= TS(T) }

— ReadTS(0,) = max(TS(T), ReadTS(O,))

— Return Oy to T

» Perform write of object O or abort if conflicting:
— Find Oy s.t. max { WriteTS(O,) | WriteTS(O,) <= TS(T) }

— # Abort if another T’ exists and has read O after T
— If ReadTS(O,) > TS(T)

» Abort and roll-back T
— Else

+ Create new version O,y
+ Set ReadTS(O,y) = WriteTS(O) = TS(T)

Digging deeper

Notation

@ @ txn W(1)=3: Write creates version 1
with WriteTS = 3
Ts=3 TS=4

TS=5 R(1) =3: Read of version 1
returns timestamp 3

w(1)=3 write(O)
R(1)=3 by TS=5

Digging deeper
Notation
@ @ txn W(1) =3: Write creates version 1
with WriteTS = 3
TS=3 TS=4 TS=5 R(1) = 3: Read of version 1
returns timestamp 3
write(O)
by TS=3
o >
10
Digging deeper
Notation
@ @ txn W(1) =3: Write creates version 1
with WriteTS = 3
TS=3 TS=4 TS=5 R(1) = 3: Read of version 1
returns timestamp 3
W(1)=3 W(2)=5
R(1)=3 R(2) =5
(o] —>
Find v such that max WriteTS(v) <= (TS = 4)
write(O) = v=1has (WriteTS = 3) <=4
by TS = 4 If ReadTS(1) > 4, abort

= 3>4: false
Otherwise, write object

Digging deeper

Notation
@ @ txn W(1) =3: Write creates version 1
with WriteTS =3
TS=3 TS=4 T

Read of version 1
returns timestamp 3

S=5 R(1)=3:

W(1)=3 W(3)=4 W(2)=5
R1)=3 R(3)=4 R(2)=5

Digging deeper

&

TS=3 TS=4

W(1) =3
R(1)=5
o

Notation
txn W(1) =3: Write creates version 1
with WriteTS = 3
TS=5 R(1) =3: Read of version 1

returns timestamp 3

BEGIN Transaction
tmp = READ(O)
WRITE (O, tmp + 1)

END Transaction

>
>

Find v such that max WriteTS(v) <= (TS = 5)
= v=1has (WriteTS =3) <=5
Set R(1) = max(5, R(1)) =5

o >
Find v such that max WriteTS(v) <= (TS = 4)
= v=1has (WriteTS =3) <=4
If ReadTS(1) > 4, abort
= 3> 4: false
Otherwise, write object 1
Digging deeper

Notation

@ @ txn W(1) =3: Write creates version 1
S=4 T

with WriteTS = 3

Read of version 1
returns timestamp 3

TS=3 TS= S=5 R(1)=3:

w1) =3 W(2)=5
R(1)=5 R(2)=5
o

>

. Find v such that max WriteTS(v) <= (TS = 5)
BECIN Transacten — v =1 has (WriteTS = 3) <= 5
mp = (0) If ReadTS(1) > 5, abort
WRITE (0’, tmp +1) = 5>5: false
END Transaction Otherwise, write object

Digging deeper

SRR

TS=3 TS=4 TS

Wi =3
R(1)=5

Notation

3: Write creates version 1
with WriteTS = 3

=5 R(1) =3: Read of version 1
returns timestamp 3
W(2)=5
R(2)=5

write(O)
by TS=4

>

Find v such that max WriteTS(v) <= (TS = 4)
= v=1has (WriteTS = 3) <=4

If ReadTS(1) > 4, abort
= 5>4: true

Digging deeper

Notation
@ @ txn W(1) =3: Write creates version 1
with WriteTS = 3
TS=3 TS=4 TS=5 R(1) =3: Read of version 1

returns timestamp 3

W(1)=3 W(2)=5
R(1)=5 R(2)=5
0 >
Find v such that max WriteTS(v) <= (TS = 4)
= v=1has (WriteTS = 3) <=4
Set R(1) = max(4, R(1)) =5

BEGIN Transaction
tmp = READ(O)
WRITE (P, tmp + 1)

END Transaction Then write on P succeeds as well

Consider partitioned data over servers

Distributed Transactions

o L R U >
L R W U

P >
L W U

Q >

* Why not just use 2PL?
— Grab locks over entire read and write set
— Perform writes

— Release locks (at commit time)

Consider partitioned data over servers

L R U

(o] >
L R W U

P >
L W U

Q >

* How do you get serializability?
— On single machine, single COMMIT op in the WAL

— In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

+ Centralized txn manager
« Distributed consensus on timestamp (not all ops)

Strawman: Consensus per txn group?

(0] L R ? 7—)

p— "= - T——> Spanner: Google’s Globally-
Q B > Distributed Database

R J——)

. - 0SDI 2012

+ Single Lamport clock, consensus per group?
— Linearizability composes!

— But doesn’t solve concurrent, non-overlapping txn problem
21

Google’s Setting Scale-out vs. fault tolerance

* Dozens of zones (datacenters) O°o ﬁ\’;
P >

* Per zone, 100-1000s of servers Pp =

» Per server, 100-1000 partitions (tablets) QOQ =

+ Every tablet replicated via Paxos (with leader election)

Every tablet replicated for fault-tolerance (e.g., 5x)
+ So every “operation” within transactions across tablets

actually a replicated operation within Paxos RSM

» Paxos groups can stretch across datacenters!

23 — (COPS took same approach within datacenter) 2

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

TrueTime

* “Global wall-clock time” with bounded uncertainty

{ TT.now() | e

earliest latest

Consider event e,,,, which invoked tt = TT.new():
Guarantee: tt.earliest <=t (e,.,) <= tt.latest

26

Timestamps and TrueTime

Acquired locks Release locks

- - H

27

Commit Wait and Replication

Start Achieve Notify

i consensus consensus followers

Acquired locks l Release|locks

- -
-

28

Client-driven transactions

Client:

1. Issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

2. Locally performs writes
3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,
include identify of coordinator and buffered writes

5. Waits for commit from coordinator

29

Commit Wait and 2-Phase Commiit

* On commit msg from client, leaders acquire local write locks

— If non-coordinator:
» Choose prepare ts > previous local timestamps
* Log prepare record through Paxos
* Notify coordinator of prepare timestamp

— If coordinator:
» Wait until hear from other participants
* Choose commit timestamp >= prepare ts, > local ts
* Logs commit record through Paxos
» Wait commit-wait period
» Sends commit timestamp to replicas, other leaders, client

» All apply at commit timestamp and release locks

30

Commit Wait and 2-Phase Commit

Start logging Done logging

Acquired locks Release locks

|
Te |

@ 4 ICommitted
Acquired locks / / \Release locks

- H
P1 |

Acquired locks Release locks

- [e
P2 | Prepared |

31

Example

Remove X

from friend list Risky post P

| | |
e o
Remove myself

I from X’s friend list |
s |

Time | <8 8 15
& Myfriends| [XI [0
= My posts [P]

B X’s friends [me] 1[I

32

Read-only optimizations

» Given global timestamp, can implement read-only
transactions lock-free (snapshot isolation)

» Step 1: Choose timestamp s,.,q = TT.now.latest()

» Step 2: Snapshot read (at s,.,q) to each tablet

— Can be served by any up-to-date replica

33

TrueTime Architecture

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

GPS GPS GPS
timemaster timemaster timemaster
GPS Atomic-clock GPS
timemaster timemaster timemaster
Client
Datacenter 1 Datacenter 2 ... Datacentern
Compute reference [earliest, latest] = now * ¢

35

TrueTime implementation

now = reference now + local-clock offset
¢ = referencee + worst-case local-clock drift
= 1ms + 200 ps/sec
€
+6ms

time
Osec 30sec 60sec 90sec
» What about faulty clocks?

— Bad CPUs 6x more likely in 1 year of empirical data .

Known unknowns > unknown unknowns The case for Iog storage'

Rethink algorithms to reason about Hardware tech affecting software design

uncertainty

~2016

Latency Numbers Every Programmer Should Know v

Seagate ($50)

1TB HDD 7200RPM
Model: STD1000DM003-1SB10C

Latency Comparison Numbers
Operation HDD Performance

L1 cache reference 0.5 ns

latency. txt June 7, 2012

Branch mispredict 5 ne Sequential Read 176 MB/s

L2 cache reference 7 ns Sequential Write 190 MB/s

Mutex lock/unlock 25 ns)

Main memory reference 100 ns Random Read 4KiB 0.495 MB/s

Compress 1K bytes with Zippy 3,000 ns 3 us 121 IOPS

Send 1K bytes over 1 Gbps network 10,000 ns 10 us . .

Read 4K randomly from SSDx 150,000 ns 150 us Random Write 4KiB 0.919 MB/s

Read 1 MB sequentially from memory 250,000 ns 250 us 224 10PS

Round trip within same datacenter 500,000 ns 500 us)

Read 1 MB sequentially from SSD 1,000,000 ns 1,000 us 1 ms DQ Random Read 4KiB 1.198 MB/s

Disk seek 10,000,000 ns 10,000 us 10 ms 292 10PS

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms q A

Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms DQ Random Write 4KiB 0.929 MB/s
227 10PS

From https://gist.github.com/jboner/2841832 http://www.tomshardware.com/answers/id-3201572/good-normal-read-write-speed-hdd.html

See also https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html 39 40

~2016

Seagate ($50) Samsung ($330)

1TB HDD 7200RPM 512 GB 960 Pro NVMe PCle M.2

Model: STD1000DM003-1SB10C Model: MZ-V6P512BW

HDD Performance SSD Performance

Sequential Read 176 MB/s 2268 MB/s
Sequential Write 190 MB/s 1696 MB/s
Random Read 4KiB 0.495 MB/s 44.9 MB/s
121 IOPS 10,962 IOPS

Random Write 4KiB 0.919 MB/s 151 MB/s
224 10PS 36,865 IOPS

DQ Random Read 4KiB 1.198 MB/s 348 MB/s
292 |IOPS 84961 IOPS

DQ Random Write 4KiB 0.929 MB/s 399 MB/s
227 |10PS 97,412 IOPS

http://www.tomshardware.com/answers/id-3201572/good-normal-read-write-speed-hdd.html

http://ssd.userbenchmark.com/SpeedTest/182182/Samsung-SSD-960-PRO-512GB M

The Design and Implementation of a Log-Structured File System
Mendel Rosenblum and John K. Ousterhout

+ Idea: Traditionally disks laid out with spatial locality due to cost of seeks
» Observation: main memory getting bigger — most reads from memory

» Implication: Disk workloads now write-heavy — avoid seeks — write log
» New problem: Many seeks to read, need to occasionally defragment

* New tech solution: SSDs — seeks cheap, erase blocks change defrag

filel file2

Disk ‘

Sprite LFS

filel file!

Block key: E Inode |:I Directory D Data D Inode map

‘This paper will appear in the Proceedings of the 13th ACM Sym-
posium on Operating Systems Principles and the February 1992
ACM Transactions on Computer Systems. 42

1"

