Basic security properties

+ Confidentiality: Concealment of information or resources

Secu rity + Authenticity: Identification and assurance of origin of info
* Integrity: Trustworthiness of data or resources in terms of
preventing improper and unauthorized changes
+ Availability: Ability to use desired info or resource
COS 518: AdV?_nCTd C(;;np’v’ter Systems + Non-repudiation: Offer of evidence that a party indeed is
ecture

sender or a receiver of certain information

Michael Freedman * Access control: Facilities to determine and enforce who is

allowed access to what resources (host, software, network)
2

What is Cryptography?

« From Greek, meaning “secret writing”
+ Confidentiality: encrypt data to hide content
* Include “signature” or “message authentication code”

Intro to crypto in 15 minutes — Integrity: Message has not been modified
— Authentication: Identify source of message

encryption decryption
ciphertext —— plaintext

plaintext

* Modern encryption:
— Algorithm public, key secret and provides security
— Symmetric (shared secret) or asymmetric (public-private key)




Symmetric (Secret Key) Crypto

+ Sender and recipient share common key

— Main challenge: How to distribute the key?

* Provides dual use:
— Confidentiality (encryption)
— Message authentication + integrity (MAC)

» 1000x more computationally efficient than asymmetric

Symmetric Cipher Model

Symmetric key
(shared secret,
known to A & B)

Hi Bob ]lm] HiBob
. Alice Alice .
.‘ / Ciphertext \ .
4 N {
—>|aNi3q
*nB5+

C=E(M, K) M=D(C, K)
B %
e NS
C =Cipher text D = Decryption
M = Message (plaintext) ‘ 7”1 function

K = Secret Key
E = Encryption function

Public-Key Cryptography

» Each party has (public key, private key)

+ Alice’s public key PK
— Known by anybody
— Bob uses PK to encrypt messages to Alice
— Bob uses PK to verify signatures from Alice

+ Alice’s private/secret key: sk
— Known only by Alice
— Alice uses sk to decrypt ciphertexts sent to her
— Alice uses sk to generate new signatures on messages

Public-Key Cryptography

* (PK, sk) = generateKey(keysize)

* Encryption API
— ciphertext = encrypt (message, PK)
— message = decrypt (ciphertext, sk)

+ Digital signatures API
— Signature = sign (message, sk)
— isValid = verify (signature, message, PK)




(Simple) RSA Algorithm

» Generating a key:
— Generate composite n = p * q, where p and q are secret primes
— Pick public exponent e
— Solve for secret exponentdin d-e =1 (mod (p-1) (q—1))
— Public key = (e, n), private key = d

« Encrypting message m: ¢=m®modn
Decrypting ciphertextc: m = cd mod n

Security due to cost of factoring large numbers
— Finding (p,q) given n takes O(e 109 N109109 Ny gperations
— n chosen to be 2048 or 4096 bits long

Cryptography Hash Functions |

Cryptographic hash function

( and using them in systems )

» Take message m of arbitrary length and produces
fixed-size (short) number H(m)

* One-way function
— Efficient: Easy to compute H(m)
— Hiding property: Hard to find an m, given H(m)

+ Assumes “m” has sufficient entropy, not just {*heads”, “tails”}
— Random: Often assumes for output to “look” random

Cryptography Hash Functions I

+ Collisions exist: | possible inputs | >> | possible outputs |

... but hard to find

» Collision resistance:

— Strong resistance: Findanym!=m’ suchthat H(m)==H(m

— Weak resistance:  Givenm, findm’ such that H(m)==H(m

— For 160-bit hash (SHA-1)

+ Finding any collision is birthday paradox: 24{160/2} = 280

» Finding specific collision requires 22160

)
)




Hash Pointers

v |
h = H(

)

(data)

Self-certifying names

v |

Frame = H(")

(data)

» P2P file sharing software (e.g., Limewire)
— File named by F, . = H (data)
— Participants verify that H (downloaded) == F ¢

Self-certifying names

Crame =H() H(;) H() H() H()
v V[V ][¥ ¥

chunk chunk chunk chunk chunk

 BitTorrent
— Large file split into smaller chunks (~256KB each)
— Torrent file specifies the name/hash of each chunk
— Participants verify that H (downloaded) == C, ;e

— Security relies on getting torrent file from trustworthy source
15

Hash chains

H(,)

[ ] [ ] [ ]
J prev: H(') <_| prev: H(') J prev: H(')

data data data

Creates a “tamper-evident” log of data




Hash chains

H(,)

| |
prev: H(") prev: H(") prev: H(")

d% data data

If data changes, all subsequent hash pointers change

Otherwise, found a hash collision!

Fortune favors the attacker

Security more broadly

» Cost asymmetry
— Defense must protect everything

— Offense must find just one hole

» “Security” is a negative goal: hard to achieve
— Policy: desired goal

— Threat model: assumptions about what can go
wrong

Ways to attack grades.txt

» Change permissions on grades.txt to get access

» Access disk blocks directly

» Access grades.txt via www.cs.princeton.edu

* Reuse memory after Mike’s text editor exits, read data

» Read backup copy of grades.txt from Mike’s text editor

* Intercept network packets to file server storing grades.txt
» Send Mike a trojaned text editor that emails out the file

+ Steal disk from file server storing grades.txt

» Get discarded printout of grades.txt from the trash

+ Call sysadmin, pretend to be Mike, reset his password

Example from MIT 6633




paymaxx.com (2005)

* https://my.paymaxx.com/
— Requires username and password
— If you authenticate, provides menu of options
— One option is to get a PDF of your W2 tax form

* https://my.paymaxx.com/get-w2.cgi?id=1234

— Gets a PDF of W2 tax form for ID 1234

— get-w2.cgi forgot to check authorization

+ Attacker manually constructs URLs to fetch all data

Example from MIT 62033

Thinking about threat models...

Example: Passwords

+ Can't store passwords in a file that could be read

— Concerned with insider attacks / break-ins

* Must compare typed passwords to stored passwords

— Does H (input) == H (password) ?

» Memory cheap: build table of all likely password hashes?

23

22
Password stats
(leaked 32M passwords, 2009)
Password Popularity - Top 20
Rank | password | g0 o o) Rank | Password | it e

1 123456 290731 n Nicole 17168

2 12345 79078 12 Daniel 16409

3 123456789 76790 13 babygirl 16094

4 Password 61958 14 monkey 15294

5 iloveyou 51622 15 Jessica 15162

6 princess 35231 16 Lovely 14950

7 rockyou 22588 17 michael 14898

8 1234567 21726 18 Ashley 14329

9 12345678 20553 19 654321 13984

10 abc123 17542 20 Qwerty 13856

+ 5,000 unique passwords account for 20% users (6.4M)

< Similar statistics in Gawker breakin, 2010

24




Example: Passwords

Attacking specific accounts

» Can't store passwords in a file that could be read

— Concerned with insider attacks / break-ins

* Must compare typed passwords to stored passwords

— Does H (input) == H (password) ?

* Memory cheap: build table of all likely password hashes?
— Use “salt” to compute h = H (password || salt)
— Store salt as plaintext in password file, not a secret

— Then check whether H (input, salt) ==

25

» “Tar pit” connections
— Failed logins take 2-3 seconds to respond
— ...but can just retry within 100s of ms
— ...or launch attack from many bots concurrently

* Max number of failed connections
— “Lock” account and require additional information

» Two-factor auth
— “What you have” + “what you know”

26

HTTP Security

27

“Securing” HTTP

* Threat model
— Eavesdropper listening on conversation (confidentiality)
— Man-in-the-middle modifying content (integrity)

— Adversary impersonating desired website (authentication, and
confidentiality)

* Enter HTTP-S
— HTTP sits on top of secure channel (SSL/TLS)

— All (HTTP) bytes written to secure channel are encrypted and
authenticated

— Problem: What is actually authenticated to prevent
impersonation? Which keys used for crypto protocols?

28




Learning a valid public key

M https://www.wellsfargo.com/ \ 4
* What is that lock?

— Securely binds domain name to public key (PK)

* Believable only if you trust the attesting body

* Bootstrapping problem: Who to trust, and how to tell if
this message is actually from them?

— If PK is authenticated, then any message signed
by PK cannot be forged by non-authorized party

29

How to authenticate PK

M https:/ /www.wellsfargo.com/ v

General | Details |

This certificate has been verified for the following uses:
SSL Server Certificate

Issued To

Common Name (CN) www.wellsfargo.com
Organization (O) Wells Fargo and Company
Organizational Unit (OU) 1SG

Serial Number 41:C5:CD:90:95:3C:A1:4B:C1:8A:
Issued By

Common Name (CN) <Not Part Of Certificate>
Organization (0) VeriSign Trust Network
Organizational Unit (OU) VeriSign, Inc.

Validity

Issued On 5/12/10

Expires On 5/13/11

Fingerprints
SHAL1 Fingerprint C5:EC:18:24:50:9D:90:93:96:69:,
MDS Fingerprint 1C:51:99:C9:EA:7B:FB:64:3F:92:F

Certificate Hierarchy

() Builtin Object Token:Verisign Class 3 Public Primary Certific
() VeriSign, Inc.
www.wellsfargo.com

Certificate Fields

Not After
Subject
() Subject Public Key Info
i~Subject Public Key Algorithm

() Extensions
i~Certificate Basic Constraints
i-Certificate Key Usage
CRL Distribution Points

Field Value

Modulus (1024 bits):

©9 b3 £9 0 4a 42 be la c4 Oa a0 bS e0 9c 79 89
52 82 bl 89 b3 82 dc 2d 03 2b le 77 c3 4c 7d 97
37 62 c6 7b 31 b5 6b 25 d3 9e Te 7e 07 95 Te £6
ab 6a 5c 88 ec 27 9d 72 3e a0 80 Oc a5 ea dé £f

Transport Layer Security (TLS)
(Enhances/Replaces SSL)

Sen? new random value,
list of supported ciphers
. Send new random value,

digital certificate with PK
Send pre-secret, encrypted
under PK <«

\

Create shared secret key « Create shared secret ke
from pre-secret and random from pre-secret and random

Switch to new symmetric- « Switch to new symmetric-
key cipher using shared key key cipher using shared key

31

Comments on HTTPS

* Note that HTTPS authenticates server, not content

» Switch to symmetric-key crypto after public-key ops

— Symmetric-key crypto much faster (100-1000x)

— PK crypto can encrypt message only approx. as large as key
(2048 bits — this is a simplification) — afterwards uses hybrid

* HTTPS on top of TCP, so reliable byte stream

— Can leverage fact that transmission is reliable to ensure: each
data segment received exactly once

— Adversary can’ t successfully drop or replay packets

32




The trouble with CAs

* Browse/OS vendors pick which CAs to trust
— Sometimes they revoke this trust — e.g. DigiNotar.

* No notion of CAs having authority over only given TLD
* Trust the {Iranian, Chinese, US} national authorities?

» What standards does Apple use to pick root certs?
Google? MSFT?

— There’s a restraint-of-trade issue here. Can’t enter the
CA business without vendor support...

33

DNS Security

34

Hierarchical naming in DNS
unnamed root

o
e (D ()

gcnc domains country domains

my.east.bar.edu usr.cam.ac.uk

12.34.56.0/24

35

DNS Integrity: Trust the TLD operators?

« |f domain name doesn’ t exist, DNS should return
NXDOMAIN (non-existant domain) msg

* Verisign instead creates wildcard DNS record for all
.com and .net domain names not yet registered

— September 15 — October 4, 2003

+ Redirection for these domain names to Verisign web
portal: “to help you search”

— and serve you ads...and get “sponsored” search
— Verisign and online advertising companies make money...




DNS Integrity:
Answer from authoritative server?

* DNS cache poisoning
— Client asks for www.evil.com

— Nameserver authoritative for www.evil.com returns
additional section for (www.cnn.com, 1.2.3.4, A)

— Thanks! |1 won’t bother check what | asked for

37

DNS Integrity:
Answer from authoritative server?

» To prevent cache poisoning, client remembers domain
and 16-bit request ID (used to demux UDP response)

+ But...DNS hijacking attack:
- 16 bits: 65K possible IDs
- What rate to enumerate all in 1 sec? 64B/packet
- 64*65536*8 / 1024 / 1024 = 32 Mbps

- Prevention: Also randomize the DNS source port

- Windows DNS alloc’s 2500 DNS ports: ~164M possible IDs
- Would require 80 Gbps

- Kaminsky attack: this source port...wasn’t random after all

38

Let’s strongly believe the answer!
Enter DNSSEC

* DNSSEC protects against data spoofing and
corruption

» DNSSEC also provides mechanisms to
authenticate servers and requests

* DNSSEC provides mechanisms to establish
authenticity and integrity

39

PK-DNSSEC (Public Key)

» The DNS servers sign the hash of resource record set
with its private (signature) keys

+ Public keys can be used to verify the SIGs

» Leverages hierarchy:

— Authenticity of nameserver’s public keys is established by a
signature over the keys by the parent’s private key

— Inideal case, only roots’ public keys need to be distributed out-
of-band

40

10



Verifying the tree

Question: www.cnn.com ?

. (root) ‘

dns.cs.princeton.edu
src.cs.princeton.edu o

ask .com server
SIG (ip addr and PK of .com server)

www.cnn.com A

stub
reso IVe I XOKXXKXXKXXK

resolver

.com

www.cnn.com A ? ‘

ask cnn.com server
SIG (ip addr and PK of cnn.com server)

signatures

add to cache

‘ slave servers ‘

transaction]

%
Yy
D

signatures

cnn.com

1"



