Cluster Scheduling

COS 518: Advanced Computer Systems
Lecture 13

Michael Freedman

Key aspects of cloud computing

1. lllusion of infinite computing resources available on

demand, eliminating need for up-front provisioning

2. The elimination of an up-front commitment

3. The ability to pay for use of computing resources

on a short-term basis

From “Above the Clouds: A Berkeley View of Cloud Computing” 2

Two main sources of resource demand

» “Services”

— External demand, scale supply to match demand

* “Data analysis”

— Tradeoff scale & completion time
* E.g., use 1 server for 10 hours vs. 10 servers for 1 hour

— Source of demand elasticity!

Type of contract

Spot - 1 hr duration
Spot— 6 hr duration
On-demand

Price (m4.xlarge)
$0.139 / hour
$0.176 / hour
$0.215 / hour

Towards fuller utilization

Capacity

Resources

Demand

T T T
1 2 3
Time (days)

» Source of variable demand?
— Search, social networks, e-commerce, usage have diurnal patterns

— Apocryphal story: AWS exists because Amazon needed to provision

for holiday shopping season, wanted to monetize spare capacity

« But...if provision for peak, what around remaining time?
— Fill-in with non-time-sensitive usage, e.g., various data crunching

— E.g., Netflix using AWS at night for video transcoding

4

Today'’s lecture

» Metrics / goals for scheduling resources

» System architecture for big-data scheduling

Scheduling: An old problem

* CPU allocation

— Multiple processors want to execute, OS selects
one to run for some amount of time

 Bandwidth allocation

— Packets from multiple incoming queue want to be
transmitted out some link, switch chooses one

What do we want from a scheduler?

* Isolation

— Have some sort of guarantee that misbehaved processes
cannot affect me “too much”

« Efficient resource usage

— Resource is not idle while there is process whose demand
is not fully satisfied

— “Work conservation” -- not achieved by hard allocations

* Flexibility

— Can express some sort of priorities, e.g., strict or time based

7

Single Resource: Fair Sharing

* nusers want to share a resource (e.g. CPU)
— Solution: give each 1/n of the shared resource

* Generalized by max-min fairness
— Handles if a user wants less than its fair share
— E.g. user 1 wants no more than 20%
— Work conserving or work preserving
* No unused capacity if there’s demand.

» Generalized by weighted max-min fairness
— Give weights to users according to importance
— User 1 gets weight 1, user 2 weight 2

Max-Min Fairness is Powerful

» Weighted Fair Sharing / Proportional Shares
— User u1 gets weight 2, u2 weight 1

» Priorities: Give u1 weight 1000, u2 weight 1

* Reservations
— Ensure u1 gets 10%: Give u1 weight 10, sum weights < 100

* Deadline-based scheduling

— Given a job’s demand and deadline, compute user’s reservation / weight

* Isolation: Users cannot affect others beyond their share

Max-min Fairness via Fair Queuing

+* Fair queuing explained in a fluid flow system:
reduces to bit-by-bit round robin among flows

— Each flow receives min(r, 1), where

* r;—flow arrival rate
* f—link fair rate (see next slide)

» Weighted Fair Queuing (WFQ)

— Associate a weight with each flow

Fair Rate Computation

* If link congested, compute f'such that

¥ min(r, f)=C F=4:

i min(8, 4) = 4
8 10 4 min(c, 4) =
B ——3 minGe)= 2

EEEEEBN

1"

Fair Rate Computation

+ Associate a weight w; with each flow i

* Iflink congested, compute f'such that

Emin(ri,fxwi)=c f=2:

i min(8, 2*3) = 6
(wy =3) s: 10 6 min(c, 2*1) =
(ws=1) 2 2 min(2, 2*1) = 2

Theoretical Properties of Max-Min Fairness Why is Max-Min Fairness Not Enough?

- Share guarantee + Job scheduling is not only about a single resource

— Tasks consume CPU, memory, network and disk I/O

* What are task demands today?

— Each user gets at least 1/n of the resource

— But will get less if her demand is less
e
 Strategy-proof

— Users are not better off by asking for more than they need

— Users have no reason to lie

13 14
Heterogeneous Resource Demands How to allocate?
7 T T T
o® Maps
=°F > tasks are. - . Reduces|| + 2resources: CPUs & memory
o [rintensive H H
2o J o 100%
£ 4 A [R R + User 1 wants <1 CPU, 4 GB> per task Talla]
g 3[; t task heed ~ Some ta<>.ka are S I I R
% e PU, 2 GB RAM> ¢ Mmemory-intensive » User 2 wants <3 CPU, 1 GB> per task 1T T i
bl Se © °) o)
3 S 22Y 5 0% CPU mem
! ACE
0 & ; J « What’s a fair allocation?
0 3 4 5 6 7 g
Per task memory demand (GB)
2000-node Hadoop Cluster at Facebook (Oct 2010) .

A Natural Policy

* Asset Fairness: Equalize each user's sum of resource shares

« Cluster with 28 CPUs, 56 GB RAM ~ 100%

— U, needs <1 CPU, 2 GB RAM> per task,
or <3.6% CPUs, 3.6% RAM> per task

— U, needs <1 CPU, 4 GB RAM> per task, 0%

50%

or <3.6% CPUs, 7.2% RAM> per task CPU RAM
) . [l User1
+ Asset fairness yields W User 2

— Uy 12 tasks: <43% CPUs, 43% RAM> (3>=86%)
— U, 8tasks: <28% CPUs, 57% RAM> (3=86%)

Strawman for asset fairness

* Approach: Equalize each user’'s sum of resource shares

100%

» Cluster with 28 CPUs, 56 GB RAM
— Uyneeds <1 CPU, 2 GB RAM>pertask, __ F==2== i

°"</" Problem: violates share guarantee
- U,n User 1 has <50% of both CPUs and RAM

or <
Better off in separate cluster with half the resources

» Asset fairness yields @ User2
- Up12 task(<43% CPUs, 43% RAM>)Z:86%)
— U,: 8tasks: <28% CPUs, 57% RAM> (3 =86%)

Cheating the Scheduler

+ Users willing to game the system to get more resources

* Real-life examples

— Acloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low.
Users implemented maps in the reduce slots!

— Asearch company provided dedicated machines to users that
could ensure certain level of utilization (e.g. 80%).
Users used busy-loops to inflate utilization.

* How achieve share guarantee + strategy proofness for sharing?

— Generalize max-min fairness to multiple resources/

Dominant Resource Fairness (DRF)

» Auser’s dominant resource is resource user has biggest share of

— Example:
Total resources:

25% CPUs 20% RAM

Dominant resource of User 1 is CPU (as 25% > 20%)

» Auser’s dominant share: fraction of dominant resource allocated

— User 1's dominant share is 25%

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, lon Stoica, NSDI"11 5

Dominant Resource Fairness (DRF)

* Apply max-min fairness to dominant shares

« Equalize the dominant share of the users. Example:
— Total resources: <9 CPU, 18 GB>
— User 1demand: <1 CPU, 4 GB>; dom res: mem (1/9 <4/18)
— User2demand: <3 CPU, 1 GB>; domres: CPU (3/9>1/18)

Y
100% 8 user 1

B yser 2
50%

CPU mem

(9 total) (18 total)
21

Today’s lecture

1. Metrics / goals for scheduling resources

2. System architecture for big-data scheduling

\
Online DRF Scheduler

Whenever available resources and tasks to run:
Schedule task to user with smallest dominant share

22

Many Competing Frameworks

* Many different “Big Data” frameworks
— Hadoop | Spark
— Storm | Spark Streaming | Flink
— GraphLab
- MPI

* Heterogeneity will rule
— No single framework optimal for all applications

— So...each framework runs on dedicated cluster?
24

One Framework Per Cluster Challenges

* Inefficient resource usage
— E.g., Hadoop cannot use underutilized resources from Spark

— Not work conserving

« Hard to share data

— Copy or access remotely, expensive

* Hard to cooperate
— E.g., Not easy for Spark to use graphs generated by Hadoop

25

Common resource sharing layer ?

 Abstracts (“virtualizes”) resources to frameworks
+ Enable diverse frameworks to share cluster
* Make it easier to develop and deploy new frameworks

co - =" (R \ --

Resource
Management System
<

4 S 4

J WRUPS Sl 4
Uniprogramin Multiprograming

26

Abstraction hierarchy 101

In a cluster:
... a framework (e.g., Hadoop, Spark) manages 1+ jobs
... a job consists of 1+ tasks

. a task (e.g., map, reduce) involves 1+ processes
executing on single machine

Executor | — — — _ Executor | — — _ _
‘ N

Job 1:tasks 1, 2, 3,4
Job 2: tasks 5, 6, 7

[FacKeT]

Framework
Scheduler
Executor | ,|| (e.g., Job Tracker)

—(.
r‘ B SHEC o 1
i h S

NS e e, e, ————————
27

1
1

1

1 P

1

X Executor le
1

1

1

Abstraction hierarchy 101

In a cluster:
... a framework (e.g., Hadoop, Spark) manages 1+ jobs
... a job consists of 1+ tasks

... a task (e.g., map, reduce) involves 1+ processes
executing on single machine

+ Seek fine-grained resource sharing
— Tasks typically short: median ~= 10 sec — minutes

— Better data locality / failure-recovery if tasks fine-grained

28

Approach #1: Global scheduler

» Global scheduler takes input, outputs task schedule
— Organization policies
— Resource Availability
— Estimates: Task durations, input sizes, xfer sizes, ...
— Job requirements: Latency, throughput, availability...

— Job execution plan: Task DAG, inputs/outups

* Advantages: “Optimal’

» Disadvantages

— More complex, harder to scale (yet Google: 10,000s servers/scheduler)

— Anticipate future requirements, refactor existing

29

Google’s Borg

+ Centralized Borgmaster + Localized
Borglet (manage/monitor tasks) R

* Goal: Find machines for a given job

job hello = {

runtime = { cell = “ic” }

binary = ‘../hello webserver’

args = { port = ‘%port%’ }

requirements = {
RAM = 100M (_1_4;“
disk = 100M =T e
CPU = 0.1

}
replicas = 10000

}

Large-scale cluster management at Google with Borg
A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, EuroSys 15

(]
O
=

30

Google’s Borg

+ Centralized Borgmaster + Localized
Borglet (manage/monitor tasks)

* Goal: Find machines for a given job

» Used across all Google services

— Services: Gmail, web search, GFS

— Analytics: MapReduce, streaming

« Framework controller sends master
allocation request to Borg for full job =
=0

=

31

Google’s Borg

 Centralized Borgmaster + Localized

Borglet (manage/monitor tasks) R

* Goal: Find machines for a given job
Cell

» Allocation

— Minimize # / priority preempted tasks

— Pick machines already having copy
of the task’s packages

— Spread over power/failure domains

— Mix high/low priority tasks

=

32

Approach #2: Offers, not schedule

» Unit of allocation: resource offer

— Vector of available resources on a node
— E.g., node1: <1CPU, 1GB>, node2: <4CPU, 16GB>

1. Master sends resource offers to frameworks

2. Frameworks:
— Select which offers to accept
— Perform task scheduling
— Unlike global scheduler, requires another level of support

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, lon Stoica, NSDI'11 33

How to allocate resources? DRF!

Today’s lecture

» Metrics / goals for scheduling resources

— Max-min fairness, weighted-fair queuing, DRF

» System architecture for big-data scheduling

— Central allocator (Borg), two-level resource offers (Mesos)

CPU Memory
Cluster Supply 10 20
A's Demand 4 (40%) 2 (10%)

B’s Demand 1 (10%) 5(25%)
EAI e
Remalmng Offer A’s Allocation B’s Allocation
(10cpu, 20gb) (2cpu, 2gb) to A (Ocpu, Ogb, 0%) (Ocpu, Ogb, 0%)
(10cpu, 20gb) (4cpu, 3gb) to A (4cpu, 3gb, 40%) (Ocpu, Ogb, 0%)

(6cpu, 17gb) (1cpu, 3gb) to B (4cpu, 3gb, 40%)

)

) (Ocpu, Ogb, 0%)
(5cpu, 12gb) (1cpu, 5gb) to B

)

)

(4cpu, 3gb, 40%) (1cpu, 5gb, 25%)
toA (8cpu, 5gb, 80%) (1cpu, 5gb, 25%)
toB (8cpu, 5gb, 80%) (2cpu, 11gb, 55%)

(1cpu, 10gb) (4cpu, 2gb.
(Ocpu, 4gb) (1cpu, 6gb

34

