Distributed Systems

COS 418: Distributed Systems
Lecture 1

Mike Freedman

Case Study: MapReduce

(Data-parallel programming at scale)

Application: Word Count

SELECT count(word) FROM data
GROUP BY word

cat data.txt

tr -s '[[:punct:][:space:]]' \n'

sort | uniq -c

Using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs

Using partial aggregation

1. In parallel, send to worker:
— Compute word counts from individual files

— Collect result, wait until all finished
2. Then merge intermediate output

3. Compute word count on merged intermediates

MapReduce: Programming Interface

map (key, wvalue) -> list(<k’, v’'>)

— Apply function to (key, value) pair and produces
set of intermediate pairs

reduce (key, list<value>) -> <k’, v’'>
— Applies aggregation function to values

— QOutputs result

MapReduce: Programming Interface

map (key, value):
for each word w in wvalue:

FmitIntermediate (w, "1");

reduce (key, list (values):
int result = 0;
for each v in wvalues:
result += Parselnt (v);

Fmit (AsString (result));

MapReduce: Optimizations

combine (list<key, wvalue>) -> list<k,v>
— Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> 2 <the, 3>

— reduce() should be commutative and associative

partition(key, 1nt) -> int
— Need to aggregate intermediate vals with same key
— Given n partitions, map key to partition 0 <i<n
— Typically via hash(key) mod n

Putting it together...

how
(how, 1), (much, 1), much
How much wood (wood, 1), (would, 1), wood
would a woodchuck (a, 1), (woodchuck, 1), would
a
chuck if a woodchuck (chuck, 1), (if, 1), (a, 1),
woodchuck
could chuck wood? (woodchuck, 1), (could, 1),

chuck
if

a
(chuck, 1), (wood, 1)
woodchuck

could

map combine partition reduce

a

(a, 1), (woodchuck, 1), woodchuck
A woodchuck would (would, 1), (chuck, 1), would
chuck a lot of wood (a, 1), (lot, 1), (of, 1), chuck
if a woodchuck (wood, 1), (if, 1), (a, 1), lot
could chuck wood. (woodchuck, 1), (could,

1), (chuck, 1), (wood, 1)

Synchronization Barrier

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

how
(how, 1), (much, 1), much
(wood, 1), (would, 1), wood
(a, 1), (woodchuck, 1),

would

a

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

woodchuck
chuck
if

could

(a, 1), (woodchuck, 1),
(would, 1), (chuck, 1),
(a, 1), (lot, 1), (of, 1),

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

- NN N = N - -

a

woodchuck

10

Fault Tolerance in MapReduce

« Map worker writes intermediate output to
local disk, separated by partitioning. Once
completed, tells master node.

« Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

I Note:

— “All-to-all” shuffle b/w mappers and reducers

— Written to disk (“materialized”) b/w each stage

Fault Tolerance in MapReduce

« Master node monitors state of system
— If master failures, job aborts and client notified

« Map worker failure
— Both in-progress/completed tasks marked as idle

— Reduce workers notified when map task is re-executed
on another map worker

* Reducer worker failure
— In-progress tasks are reset to idle (and re-executed)
— Completed tasks had been written to global file system

Straggler Mitigation in MapReduce

Running Tasks
(Normalized by max in phase)

Time (Normalized by Job Lifetime)

| ‘Map.Read ——
l| B \ Map.MoVe
. Map - - - -
[§ 4 Reduce
PNy R R .
0 0.1 0.2 0.3 0.4 0.5

 Tail latency means some workers finish late

* For slow map tasks, execute in parallel on second map
worker as “backup”, race to complete task

13

