
Distributed Systems

COS 418: Distributed Systems
Lecture 1

Mike Freedman

Case Study: MapReduce

(Data-parallel programming at scale)

2

Application: Word Count

SELECT count(word) FROM data

GROUP BY word

cat data.txt

| tr -s '[[:punct:][:space:]]' '\n'

| sort | uniq -c

3

4

Using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

5

Using partial aggregation

1. In parallel, send to worker:

– Compute word counts from individual files

– Collect result, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

map(key, value) -> list(<k’, v’>)

– Apply function to (key, value) pair and produces
set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

– Applies aggregation function to values

– Outputs result

6

MapReduce: Programming Interface

7

MapReduce: Programming Interface

map(key, value):
for each word w in value:

EmitIntermediate(w, "1");

reduce(key, list(values):

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

combine(list<key, value>) -> list<k,v>

– Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> à <the, 3>

– reduce() should be commutative and associative

partition(key, int) -> int

– Need to aggregate intermediate vals with same key
– Given n partitions, map key to partition 0 ≤ i < n
– Typically via hash(key) mod n

8

MapReduce: Optimizations

9

Putting it together…

map combine partition reduce

10

Synchronization Barrier

11

Fault Tolerance in MapReduce

• Map worker writes intermediate output to
local disk, separated by partitioning. Once
completed, tells master node.

• Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers

– Written to disk (“materialized”) b/w each stage

12

Fault Tolerance in MapReduce
• Master node monitors state of system

– If master failures, job aborts and client notified

• Map worker failure
– Both in-progress/completed tasks marked as idle
– Reduce workers notified when map task is re-executed

on another map worker

• Reducer worker failure
– In-progress tasks are reset to idle (and re-executed)
– Completed tasks had been written to global file system

13

Straggler Mitigation in MapReduce

• Tail latency means some workers finish late

• For slow map tasks, execute in parallel on second map
worker as “backup”, race to complete task

