3D Rendering

COS 426

Syllabus

Ill. Rendering

Rendering
(Michael Bostock, CS426, Fall99)

-

What is 3D Rendering?

« Topics in computer graphics
o Imaging = representing 2D images
Modeling = representing 3D objects
Rendering = constructing 2D images from 3D models
Animation = simulating changes over time

Camera éLight
o 0 — @
1IEW

Plane
3D Model oD Image

o

o

o

-
What is 3D Rendering?

« Construct image from 3D model

Light
Camera é

E Rendering
> o

View
Plane

3D Model oD Image

3D Rendering Scenario |

* Interactive

o Images generated in fraction of a second (<1/10)
as user controls rendering parameters (e.g., camera)

« Achieve highest quality possible in given time
« Useful for visualization, games, etc.

meshview

4)

BE;

3D Rendering Scenario |l Lod

o Offline

o One image generated with as much quality as possible
for a particular set of rendering parameters

« Take as much time as is needed (minutes)
* Photorealisism: movies, cut scenes, etc.

Avatar)

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?

3D Rendering Example

file:///c:/Funk/Movies/tt.bat

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determinaton
o Lights
o Reflectance
o Shadows
o Indirect illumination
o Sampling
o etc.

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determinaton
o Lights
o Reflectance
o Shadows
o Indirect illumination
o Sampling
o etc.

4)

BE;

Camera Models A

 The most common model is pin-hole camera
o Light rays arrive along paths toward focal point
o No lens effects (e.g., everything in focus)

Other models consider ...
Depth of field
Motion blur
Lens distortion

-

Camera Parameters

 What are the parameters of a camera?

s j
Pinhole Camera Parameters N

* Position
o Eye position (p,, py, P,)

* Orientation
o View direction (d,, d,, d,) or “look at” point
o Up direction (u,, uy, u,)

Up direction

 Coverage
o Field of view (fov,, fov,)

 Resolution
o Inxandy

Eye
Position

View Plane

View plane

Eye position

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determination
o Lights
o Reflectance
o Shadows
o Indirect illumination
o Sampling
o etc.

-

Visible Surface Determination

* The color of each pixel on the view plane
depends on the radiance (“amount of light”)
emanating from visible surfaces

How find visible surfaces?

ng'mc*n&h-

Promote visibality

COHERENCE

SORTING

vm.&'?‘

what prop-
erty

(2)
Method

(3
Type

(4)
Result
structure

(5)
Nusber per
frame, num-
ber of ob-
Jects

(merge)
Nusber of
new entries
{er frame,

ength of
list

(search)
Nuaber of
searches,
length of
Tast

COMPARISON ALGORITHMS

edges edges

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker

op

E-OBJECT

ALGORITHMS

OBJECT SPACE

edges volumes

(partly each)

LIST PRIORITY
ALGORITHNS

a priora
priority

of a vertex to al
edges at vertex

”hck Edge Cull
back- facin;
normals § topolog
2 Cull

5) 1, E,

normals § topolog
3) Cull
4) List, E

1,8, €

1)"Way to vertex
against all faces
) Depth,
Surroundedness
3) Exhaustive sea
4) Quantitative
visibility of ver
$) # Objects, Fr

with all E
2) Penetration

1

r: separating
planes
2) Dot product with

Yy

List of cdges,E
.

Contour Edge Cul
1) Tdges se atling

y

Initial Visibilst

T

t

Edge Intersecta
lT"n!eruc! one E’

1
;
front § back faces
2) Dot product with

Promote visibality
pf a vertex to all
pdges at vertex

Back Edge Cull

1) Eafu separatang
hack- acnniuphnu
2) Dot product wath
hormals & topology

) Cull

l; List of edges, Es
E) 1, B,

(Omatted)

Initial Visibilit
17 Way to vertex

against all faces
2

1th all B
2) Interseft in

with sweep triangle [prcture plane, depth
3) Cull {unordered) [3) Cull (unordered)
4) Intersection lis Intersection 11sg
$) g, E Eg, By -

Sort Alo: e ort Along Edge
1) Tntersections on |1) Tntersections on
adge, ordering dge, ordering
2) Comparison)

3) Bubblie ;
4) Answer gnnﬂ
5) E . X /B 5) By, X /8,

(Omit 3f well hidden)| (must be done)

Promote visibility
of a vertex to all
edges at vertex

Back Edge Cull
1

back-facing planes

normals § topology

!g Cull
4) List of edges .l’
5) 1, B,

(Omitted)

against all faces

with all E

2) Interseft in
gutuu plane, dcs!
)} Cull (unordered)
4) Intersection lis
5) B, By - 1

#;t Along Edge
17 Tntersections on
g()lu. ordering

3)
4) Answer

!

st Riosy ofg |
(Omit 31f well hadden

ges separatingfl)

2) Dot proiuu with?) Dot pr

Back Edge Cull
ges separating

ack-facing planes

L uct with

ormals § topology
Cull

) Last of edges.p
) 1L E ’

Clipping Cull
Tntersect edge
th visible volume
Cull

E

)
1
)
)
) 13,

Initial Visibilat u!e(Volm Test
I) Way to vertex ges, vis it

elative to volumes

Depth, Betweenness } Linear
surroundedness surroundedness Programming
3; Exhaustive search 3) Exhsustive searc) Mini-max sort
4) Quantitative 4) Quantitative 4) Answer
151b1l1ty of vertey visibility of vcr:e{n E.o split edges,
5) fobjects, 'r) fobjects, Fr fobjects
Edge Intersection Edge Intersection
hy 'nuruci ane g" 1 !nteruct one !’

APPEL GALIMBERTI, et sl LOUTREL ROBERTS CHUMACKER, et al
1967 1969 1967 1963 1969 @ — —
T TP,NP TP, NP TP, NP TP, CC, CF, NP F, NP, LS (TP)

rame coherence
an depth
X coherence used

Intra-Cluster

Tior
1) Fices -
visabalaty

2) Dot product with
normals

3) Exhaustive search
4) Ordered table

5) 0, (otf-line)

Inter-Cluste
;:-!gﬂ!i

1) CTusters

2) Dot product with

separating planes

3) Prefix scan

binary tree

4) ordered table
5) 1, €,

Back-Face Cull
aces
2) Dot product with
face normal
3) Cull
4) Smaller ordered
table
5) 1, l!

Y Cull
17 Eun by Y extent

2) Mini-max on

X intercepts

3) Cull (unordered)
4] X intercepts of
relevant segments

4) Segments at
this X
$) nm, S,

Pryor Search
!; gi]nnts. priorit

2) Logic network
3) Logic network
4) yisable segment
S) nm, Sy

Figure 29. Characterization of ten opaque-object algorithms &. Comparison of the algorithms.

IMAGE SPACE

dynamicall,
computed
priority

A Characterization of Ten Hudden-Surface Algorithns

ares sampling

DEPTH PRIORTTY ALGORITHMS

point sampling

2) Comparison
3) Ord:

Newoll Special

1T Faces SiTrvise
visibality

2) Depth, bounding
boxes, separation
3) Bubble, splittan
4) Ordered table

5) 1.F +splat faces

y Y Sort

1) Face segment

by Y un.c”

2) Y intercept

3) Bucket

4) None

5) :' + spiit faces

f

X Merge
1) Segments,
X intercept

rge

ered me
;] Ordered list

24 S'

2) Depth, mini-max
in X and ¥, sum of
ang les

3) Radix & subdivy-
sion with overlap
4) Stacks of
unordered tables

5) L', F‘,/h:tm'l

Depth Search

1) Eurrounaer faces
t; 4-corner compare
3) Exhaustive

4) Answer/failure
$) I.'. F'/llctor 2

TV _Sort (Opt)
ort windows I[nto
scan-line order if
needed

Narnock Special X Merge
TY Faces uidi windowl) Edges, X value

2) Comparison
3) Merge (ordred’
4) 2-way linked

X Sort
1) Edges, X value
2) Comparison
3] 2 bucket
4] Table of lists
51 n, S,

X left

2} Comparison

3) Bubble

&) 2-way linked
list

5) n, S

Span Cull
lrzgms.ovcrhp
with sample span

2) Double comparison
3) Cull ordered 1isg
H) Active list
5) n'Sv *f (1), Sl

i Search

1) Segments, 2

) Depth by
logarithmic search

H) Visible segment

5) n'Sv'l(’l]. Dc

3) Search (unordered)

Praoraty Search
ges, X value
2) Comparison

3) Praority search
4) Active segment
list

5) n, m

i Search

17 Segments, depth
2) Linear equations
and comparison

3) Search (unordered
‘; Vznble segment
S)n ZSl,Dc
(Omitted 2f X
Priorities same as
last time)

NENELL, et al WARNOCK WATKINS ROMNEY, et al BOUKNIGHT
1972 1968 1970 1967 — — 1969
None (TR) None Kone TR, CF NP

None used [Area coherence [Scanline x Scanline Scanline

coherence Depth Coherence X Coherence

Z Sort 1 Sort (Opt ; Y Sert Y Sert Y _Sert

17 Faces, wmax 2 1) Taces, max 1) Edges, min ¥ 1) Polygons, Y 1) Edges, Min Y

2) Comparison of 2) Comparison of 2) Comparison endpoants 2) Comparison

max points jmax points 3) Bucket 2) Comparison '3) Bucket

3) n logm 3) nlogm 4) Table of 1ysts |3) 2 bucket 4) Table of 11sts

4) Ordered table [4) Ordered table [3) 1. E_ ;} '{'“' of hists 5) 1, E,

. o By DR

X _Merge
1) £€s5, X value
2) Comparison
3) Nette (ordered)
4) Linked list
§) E., 28, (edges)

X Sort
1) Edges, X value
2) Co-tlruon
3) Bubble
4) 1-way linked list
5) N, 28, (edges)

I Search
1) Segments, depth
2) Linear equations
and comparison
3) Search of unm-
ordered active list
l; Visible segment
5) n%2s,, D,

-
In Practice... Brute Force

* Ray tracing
o for each pixel: determine closest object hit by ray
o compute color

* Rasterization
o for each object: enumerate pixels it hits

o keep track of color, depth of current-best
surface at each pixel

-

Ray Casting

 For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance

4 ~
Ray Casting

 For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance

O i@ (\O
(]
(o]
o
o

o
(o]
o
(o]
o
o

Ray Casting Example

Rays from camera in simple scene

../../../funk/demos/rdraw/rundemo.bat

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determinaton
o Lights
o Reflectance
o Shadows
o Indirect illumination
o Sampling
o etc.

-
Lighting Simulation

 Lighting parameters

o Light source emission Light
o Surface reflectance Source
o Atmospheric attenuation T

o

Camera response

Lighting Simulation

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determinaton
o Lights
o Reflectance
o Shadows
o Indirect illumination
o Sampling
o etc.

-

Shadows

* Occlusions from light sources

[

Shadows

* Occlusions from light sources
o Soft shadows with area light source

Moller
J

-

Shadows

Herf
J

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determinaton
o Lights
o Reflectance
o Shadows
o Indirect illumination
o Sampling
o etc.

ath Typ

es

4)
Path Types Lod

LD(S|T)*E

direct diffuse + indirect specular and transmission
Henrik Wann Jensen /

-

Path Types

LD(S|T)*E

+ soft shadows

Henrik Wann Jensen
J

-

Path Types

LD(S|T)*E +
L(S|T)*DE

+ caustics

Henrik Wann Jensen
J

-

Path Types

L(D|S|T)*E

+ Indirect diffuse illumination

Henrik Wann Jensen
J

-

3D Rendering Issues

 What issues must be addressed
by a 3D rendering system?
o Camera
o Visible surface determinaton
o Shadows
o Reflectance
o Indirect illumination
o Sampling
o etc.

-

Sampling

« Scene can be sampled with any ray

o Rendering is a problem in sampling and reconstruction

-

Summary

« Topics for upcoming lectures

O

O

O

Camera

Visible surface determinaton
Shadows

Reflectance

Indirect illumination
Sampling

etc.

(James Percy, CS 426, Fall99)

For assighment #3, you will write a ray tracer! |

Ray Casting

COS 426

Ray Casting N

* Primitive operation for one class of renderers:
o Glven a ray (origin, direction)
o Find point of first intersection with scene

* May return:
o Whether intersection occurs
o Point of intersection (x,y,z)
o Parameters of intersection on object

» Used for:
o Camera (primary) rays: backwards ray tracing
o Accumulate brightness from lights: forwards ray tracing
o Shadow rays
o Indirect illumination (path tracing)

4)

BE;

Traditional (Backwards) Ray Tracing N

* The color of each pixel on the view plane
depends on the radiance emanating along rays
from visible surfaces in scene

Surfaces

-

Scene

« Scene has:
o Scene graph with surface primitives
o Set of lights
o Camera Light

struct R3Scene {
R3Node *root;
vector<R3Light *> lights;
R3Camera camera;
R3Box bbox;
R3Rgb background,;
R3Rgb ambient;

¥ Camera

Surfaces

-

Scene Graph

« Scene graph is hierarchy of nodes, each with:
o Bounding box (in node’s coordinate system)
o Transformation (4x4 matrix)

o Shape (mesh, sphere, ... or null) [B[Sls]e]
o Material (more on this later) 7 1\
[UpperArm]]
[M,]

/ N\

[Lower Arm]
[M;]

-

Scene Graph

« Simple scene graph implementation:

struct R3Node {
struct R3Node *parent;
vector<struct R3Node *> children;
R3Shape *shape;
R3Matrix transformation;
R3Material *material;
R3Box bbox;

struct R3Shape {
R3ShapeType type;
R3Box *box;
R3Sphere *sphere;
R3Cylinder *cylinder;
R3Cone *cone;
R3Mesh *mesh;

-

Ray Casting

* For each sample (pixel) ...

o Construct ray from eye position through view plane
o Compute radiance leaving first point of intersection

between ray and scene

Camera

Surfaces

-

Ray Casting

« Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int1=0; 1 <width; i++) {
for (intj = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, i,));
R3Rgb radiance = ComputeRadiance(scene, &ray);
Image->SetPixel(i, j, radiance);

}

}

return image;

-

Ray Casting

« Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int1=0; 1 <width; i++) {
for (intj = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, I,));
R3Rgb radiance = ComputeRadiance(scene, &ray);
Image->SetPixel(i, j, radiance);

}

}

return image;

Constructing Ray Through a Pixel

Up direction

P, + tV

Ray: P

-

Constructing Ray Through a Pixel

« 2D Example

® = frustum half-angle
d = distance to view plane

right = towards % up

P1 =P, + d*towards — d*tan(®)*right
P2 = P, + d*towards + d*tan(®)*right

P =P1+ ((i + 0.5) / width) * (P2 - P1)
V=(P-Py/|P-Pyll
(d cancels out...)

_U

(@)Ul PxC

| | | | | | | |
| I I I I I I | I I

o

-

Ray Casting

« Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int1=0; 1 <width; i++) {
for (intj = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, i,));
R3Rgb radiance = ComputeRadiance(scene, &ray);
Image->SetPixel(i, j, radiance);

}

}

return image;

-

Ray Casting

« Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = Computelntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

Surfaces

-

Ray Casting

« Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = Computelntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

—1 Surfaces

-

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
o Scene

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o Octrees
o BSP trees

-

Ray Intersection

* Ray Intersection
» Sphere
o Triangle
o Box
o Scene

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o Octrees
o BSP trees

-

Ray-Sphere Intersection

-

Ray-Sphere Intersection

Ray: P =P, +tV
Sphere: |P-0O|?-r?=0

-

Ray-Sphere Intersection |

Ray: P =P, +tV
Sphere: |P-0O|?-r?=0

Substituting for P, we get:

Solve guadratic equation:
at> +bt+c=0
where:
a=1
b=2V-(P,-0)
c=|P,-C|]?-r?=0

P=P,+tV

‘Algebraic Method |

P,
P~ —

V
PO

-

Ray-Sphere Intersection |

Ray: P =P, +tV

. _ 2 _yr 2=
Sphere: [P -O[-r<=0 ‘Geometric Method |

L:O'PO

t,=LV
If (t., <0) return O

d?=LeL-t>?
if (d2>r?) return 0

t,. = sqrt(r? - d?)
t — tca = thC and tca + thC

P=P,+tV

-

Ray-Sphere Intersection

* Need normal vector at intersection
for lighting calculations

N =(P-0O)/||P-0O

-

Ray Intersection

* Ray Intersection
o Sphere
» Triangle
o Box
o Scene

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o Octrees
o BSP trees

-

Ray-Triangle Intersection

4)

BE;

Ray-Triangle Intersection A

* First, intersect ray with plane

* Then, check Iif intersection point is inside triangle

-

Ray-Plane Intersection

Ray: P =P, +tV
Plane:PN+d=0

Substituting for P, we get:
(Po+tV)sN+d=0

Solution:
t=-(Po*N+d)/(V-N)

P=P,+tV

‘Algebraic Method |

-

Ray-Triangle Intersection |

* Check if point is inside triangle algebraically

For each side of triangle
V,=T,—- P,
V,=T,- P,
N,=V,xV;
Normalize N,

Plane p(P, N,)
If (SignedDistance(p, P) < 0)
return FALSE;

T3

end

-

Ray-Triangle Intersection |

* Check if point is inside triangle algebraically

For each side of triangle
V,=T,-P
V,=T,-P
N,=V,xV;
Normalize N,
if (V+N;<O0)
return FALSE;
end T
1

T3

-

Ray-Triangle Intersection |

* Check if point is inside triangle algebraically

For each side of triangle
V,=T,-P
V,=T,-P
N,=V,xV;
Normalize N,
if (V+N;<O0)

return FALSE;

T3

end

Ray-Triangle Intersection ll| N
* Check if point is inside triangle parametrically

“Barycentric coordinates” a., B, v: Ts
P=als;+pT,+yT,
wherea + 3 +y=1

o = Area(T,T,P) / Area(T,T,T,)
B = Area(T,PT;) / Area(T,T,T,)
y = Area(PT,T;) / Area(T,T,T5,) 1—a—P

=l-a-p T,

Ray-Triangle Intersection ll| N
* Check if point is inside triangle parametrically

Compute “barycentric coordinates” a., 3: T,
a = Area(T,T,P) / Area(T,T,T,)
B = Area(T,PT;) / Area(T,T,T,)

Area(T,T,T,) =% || (T2-T1) x (T3-T1) ||
check if backfacing:

((T2-T1) x (T3-T1)) - N <0
Tl

Check If point inside triangle. T
O<oa<landO<p<1 V 2
anda+p<1

Py

-

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
» Box
o Scene

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o Octrees
o BSP trees

[] :IEEJ
Ray-Box Intersection A
« Check front-facing sides for intersection with ray

and return closest intersection (least t)
x2y2)

Ray-Box Intersection

« Check front-facing sides for intersection with ray
and return closest intersection (least t)

o Find intersection with plane
o Check If point is inside rectangle

(x1,y1)

x2y2)

0 Y

Ray-Box Intersection N

» Check front-facing sides for intersection with ray
and return closest intersection (least t)
o Find intersection with plane
o Check If point is inside rectangle

x2y2)

(x1,y1)

0 Y

-

Other Ray-Primitive Intersections

« Cone, cylinder:
o Similar to sphere
o Must also check end caps

« Convex polygon
o Same as triangle (check point-in-polygon algebraically)
o Or, decompose into triangles, and check all of them

e Mesh

o Compute intersection for all polygons
o Return closest intersection (least t)

http://www.cs.princeton.edu/courses/archive/spring10/cos426/assn3/output/cylinder2.jpg

-

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
» Scene

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o Octrees
o BSP trees

-
Ray-Scene Intersection

* Intuitive method
o Compute intersection for all nodes of scene graph
o Return closest intersection (least t)

Surfaces

-

Ray-Scene Intersection

« Scene graph is a DAG
o Traverse with recursion

Cylinder

Box

Surfaces

Ray-Scene Intersection |

R3Intersection Computelntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

I/l Check for intersection with shape

shape_intersection = Intersect node’s shape with ray

If (shape_intersection is a hit) closest_intersection = shape_intersection

else closest_intersection = infinitely far miss

I/l Check for intersection with children nodes
for each child node
Il Check for intersection with child contents
child_intersection = Computelntersection(scene, child, ray);
If (child_intersection is a hit and is closer than closest_intersection)
closest_intersection = child_intersection;

/I Return closest intersection in tree rooted at this node
return closest_intersection

-

Ray-Scene Intersection

e Scene graph can have transformations

(M,

/ O\
[LowerArm] \
(M

[Upper Arm]

-

Ray-Scene Intersection

« Scene graph node can have transformations
o Transform ray (not primitives) by inverse of M
o Intersect in coordinate system of node
o Transform intersection by M [Base]

[Upper Arm]
[M]

/ N\

[Lower Arm]
[M;]

-

Ray-Scene Intersection |l

R3Intersection Computelntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
¢ /l Transform ray by inverse of node’s transformation
I/ Check for intersection with shape
I/ Check for intersection with children nodes

// Transform intersection by node’s transformation

/I Return closest intersection in tree rooted at this node

-

Ray-Scene Intersection |l

~

A
2

R3Intersection Computelntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
¢ /l Transform ray by inverse of node’s transformation

I/ Check for intersection with shape

Il Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node
b

Recall: directions (including

ray direction and surface normal N)
must be transformed by

inverse transpose of M (or M- for ray)

N

\ =

-

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o BOX
o Scene

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o QOctrees
o BSP trees

-

Ray Intersection Acceleration

« What if there are a lot of nodes?

http://www.3dm3.com

-

Bounding Volumes

* Check for intersection with
simple bounding volume first

-

Bounding Volumes

« Check for intersection with bounding volume first

-

Bounding Volumes

« Check for intersection with bounding volume first

o |f ray doesn’t intersect bounding volume,
then it can’t intersect its contents

4)

BE;

Bounding Volumes A

« Check for intersection with bounding volume first

o If already found a primitive intersection closer than
Intersection with bounding box, then skip checking
contents of bounding box

4)

BE;

Bounding Volume Hierarchies A

« Scene graph has hierarchy of bounding volumes
o Bounding volume of interior node contains all children

-

Bounding Volume Hierarchies

~

i@@:
@,

« Checking bounding volumes hierarchically (within
each node) can greatly accelerate ray intersection

Bounding Volume Hierarchies Lol

R3Intersection Computelntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

// Transform ray by inverse of node’s transformation

I/ Check for intersection with shape

Il Check for intersection with children nodes
for each child node
I/ Check for intersection with child bounding box first
bbox_intersection = Intersect child’s bounding box with ray
If (bbox_intersection is a miss or further than closest_intersection) continue

I/ Check for intersection with child contents

child_intersection = Computelntersection(scene, child, ray);

If (child_intersection is a hit and is closer than closest_intersection)
closest_intersection = child_intersection;

// Transform intersection by node’s transformation
/I Return closest intersection in tree rooted at this node

-

:IEEJ
Sort Bounding Volume Intersections

 Sort child bounding volume intersections and
then visit child nodes in front-to-back order

-

Cache Node Intersections

~

A
e

 For each node, store closest child intersection
from previous ray and check that node first

-

Ray Intersection

* Ray Intersection
o Sphere

Triangle

o Box

Scene

o

o

* Ray Intersection Acceleration
o Bounding volumes
» Uniform grids
o Octrees
o BSP trees

-

Uniform Grid

« Construct uniform grid over scene
o Index primitives according to overlaps with grid cells

-

Uniform Grid

* Trace rays through grid cells
o Fast
o Incremental

-

Uniform Grid

« Potential problem:
o How choose suitable grid resolution?

Too little benefit
If grid is too coarse
Too much cost
If grid Is too fine

-

Ray Intersection

* Ray Intersection
o Sphere

Triangle

o Box

Scene

o

o

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
» Octrees
o BSP trees

-

Octree

« Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

-

Octree

* Trace rays through neighbor cells
o Fewer cells

4)

BE;

Octree A

* Or, check rays versus octree boxes hierarchically

o Computing octree boxes
while descending tree

o Sort eight boxes ;
front-to-back at each level

o Check primitives/children
Inside box

-

Ray Intersection

* Ray Intersection
o Sphere

Triangle

o Box

Scene

o

o

* Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o Octrees
» BSP trees

Binary Space Partition (BSP) Tree &

* Recursively partition space by planes

o BSP tree nodes store partition plane and
set of polygons lying on that partition plane

o Every part of every polygon lies on a partition plane

Binary Tree

Binary Space Partition (BSP) Tree

 Traverse nodes of BSP tree front-to-back

o Visit halfspace (child node) containing P,

o Intersect polygons lying on partition

o Visit halfspace (other child node) not containing P,

(a)
P
0
2

-/

plane

0

Binary Tree

-

Binary Space Partition (BSP) Tree

~

A
e

R3Intersection

{

// Compute parametric value of ray-plane intersection
t = ray parameter for intersection with split plane of node
If (t<min_t) || (t <max_t)) return no_intersection;

// Compute side of partition plane that contains ray start point

int side = (SignedDistance(node->plane, ray.Start()) <0)?0: 1;
intersectionl = ComputeBSPIntersection(ray, node->child[side], min_t, t);
If (intersectionl is a hit) return intersection;

intersection2 = ComputePolygonsintersection(ray, node->polygons);

If (intersection2 is a hit) return intersection2;

return intersection 3;

ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max _t)

intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t);

-
Other Accelerations

Screen space coherence — check > 1 ray at once
o Beam tracing

o Pencil tracing + |‘ \/‘}

o Cone tracing 2D EIDE
 Memory coherence S I R I I e

o) Large Scenes o o o o o o o o To—o°
« Parallelism

o Ray casting is “embarrassingly parallelizable”

* etc.

-
Acceleration

 Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

« General concepts
o Sort objects spatially
o Make trivial rejections quick
o Perform checks hierarchically
o Utilize coherence when possible

‘ Expected time is sub-linear in number of primitives |

-
Summary

« Writing a simple ray casting renderer Is easy
o (Generate rays
o Intersection tests
o Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int1=0; i <width; i++) {
for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);
Image->SetPixel(i, j, radiance);

}

}

return image;

B
Heckbert’s Business Card Ray Tracer W&

« typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;
double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,
.7,3,0.,.051.21.8.-5,1,8,8,1.,.3,.7,0.,0.,1.2,3.-6.,15.1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
8,1.,1.,5.,0,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1€31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere™s,”l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;I=sph+5;while(l-->sph)if((e=I ->kI*vdot(N,U=vunit(vcomb(-1.,P,|->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
=U.z;e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sgrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}*minray!*/

-

Next Time i1s lllumination!

Without HHlumination With lllumination

