
More on Transformations

COS 426

Agenda

Grab-bag of topics related to transformations:

• General rotations
 Euler angles

 Rodrigues’s rotation formula

• Maintaining camera transformations
 First-person

 Trackball

• How to transform normals

3D Coordinate Systems

• Right-handed vs. left-handed

x

y z

x

yz

3D Coordinate Systems

• Right-handed vs. left-handed

• Right-hand rule for rotations:

positive rotation = counterclockwise

rotation about axis

General Rotations

• Recall: set of rotations in 3-D is 3-dimensional
 Rotation group SO(3)

 Non-commutative

 Corresponds to orthonormal 3×3 matrices with

determinant = +1

• Need 3 parameters to represent a general rotation

(Euler’s rotation theorem)

Euler Angles

• Specify rotation by giving angles of rotation about

3 coordinate axes

• 12 possible conventions for order of axes, but

one standard is Z-X-Z

Euler Angles

• Another popular convention: X-Y-Z

• Can be interpreted as yaw, pitch, roll of airplane

Rodrigues’s Formula

• Even more useful: rotate by an arbitrary angle

(1 number) about an arbitrary axis (3 numbers,

but only 2 degrees of freedom since unit-length)

x

y

z

a



Rodrigues’s Formula

• An arbitrary point p may be decomposed into its

components along and perpendicular to a

p = a (p  a) + [p – a (p  a)]

a

p

Rodrigues’s Formula

• Rotating component along a leaves it unchanged

• Rotating component perpendicular to a (call it p)

moves it to pcos  + (a × p) sin 

Rodrigues’s Formula

• Putting it all together:

Rp = a (p  a) + pcos  + (a × p) sin 

= aaTp + (p – aaTp) cos  + (a × p) sin 

• So,

R = aaT + (I – aaT) cos  + [a]× sin 

where [a]× is the “cross product matrix”

Why?

























0

0

0

][

xy

xz

yz

aa

aa

aa

a

Rotating One Direction into Another

• Given two directions d1, d2 (unit length), how to

find transformation that rotates d1 into d2?
 There are many such rotations!

 Choose rotation with minimum angle

• Axis = d1 × d2

• Angle = acos(d1  d2)

• More stable numerically: atan2(|d1 × d2|, d1  d2)

Agenda

Grab-bag of topics related to transformations:

• General rotations
 Euler angles

 Rodrigues’s rotation formula

• Maintaining camera transformations
 First-person

 Trackball

• How to transform normals

Camera Coordinates

Camera right vector

maps to X axis

Camera up vector

maps to Y axis

Camera back vector

maps to Z axis

(pointing out of page)

Canonical camera coordinate system
 Convention is right-handed (looking down –z axis)

 Convenient for projection, clipping, etc.

x

y

z

Viewing Transformation

• Mapping from world to camera coordinates
 Eye position maps to origin

 Right vector maps to +X axis

 Up vector maps to +Y axis

 Back vector maps to +Z axis

x

y

z

World

right
up

back

Camera

View
plane

Finding the viewing transformation

• We have the camera (in world coordinates)

• We want T taking objects from world to camera

• Trick: find T-1 taking objects in camera to world

wpTcp 



















































w
z

y
x

ponm

lkji

hgfe
dcba

w
z

y
x

'
'

'
'

cpTwp 1

?

Finding the Viewing Transformation

• Trick: map from camera coordinates to world
 Origin maps to eye position

 Z axis maps to Back vector

 Y axis maps to Up vector

 X axis maps to Right vector

• This matrix is T-1 so we invert it to get T … easy!

























































w

z

y

x

EBUR

EBUR

EBUR

EBUR

w

z

y

x

wwww

zzzz

yyyy

xxxx

'

'

'

'

Maintaining Viewing Transformation

For first-person camera control, need 2 operations:

• Turn: rotate(, 0,1,0) in local coordinates

• Advance: translate(0, 0, –v*t) in local coordinates

• Key: transformations act on local, not global coords

• To accomplish: right-multiply by translation, rotation

Mnew  MoldT–v*t,zR,y

Maintaining Viewing Transformation

Object manipulation: “trackball” or “arcball” interface

• Map mouse positions to surface of a sphere

• Compute rotation axis, angle

• Apply rotation to global coords: left-multiply

Mnew  R,a Mold

Mouse

click

Mouse

release

Agenda

Grab-bag of topics related to transformations:

• General rotations
 Euler angles

 Rodrigues’s rotation formula

• Maintaining camera transformations
 First-person

 Trackball

• How to transform normals

Transforming Normals

Normals do not transform the same way as points!
 Not affected by translation

 Not affected by shear perpendicular to the normal

Transforming Normals

• Key insight: normal remains perpendicular to

surface tangent

• Let t be a tangent vector and n be the normal

t  n = 0 or tTn = 0

• If matrix M represents an affine transformation,

it transforms t as

t  MLt

where ML is the linear part (upper-left 3×3) of M

Transforming Normals

• So, after transformation, want

(MLt)Tntransformed = 0

• But we know that

tTn = 0

tTML
T(ML

T)-1n = 0

(MLt)T(ML
T)-1n = 0

• So,

ntransformed = (ML
T)-1n

Transforming Normals

• Conclusion: normals transformed by inverse

transpose of linear part of transformation

• Note that for rotations, inverse = transpose,

so inverse transpose = identity
 normals just rotated

COS 426 Midterm exam

• Thursday, 3/16

• Regular time/place: 3:00-4:20, CS105

• Covers color, image processing, shape

representations, but not transformations
 Also responsible for knowing all required parts of

first two programming assignments

• Closed book, no electronics,

one page of notes / formulas

