
1

Program and
Programming Style

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 1

Princeton University
Computer Science 217: Introduction to Programming Systems

For Your Amusement
“Any fool can write code that a computer can understand.

Good programmers write code that humans can
understand.” -- Martin Fowler

“Good code is its own best documentation. As you’re about
to add a comment, ask yourself, ‘How can I improve the
code so that this comment isn’t needed?’” -- Steve
McConnell

“Programs must be written for people to read, and only
incidentally for machines to execute.” -- Abelson /
Sussman

“Everything should be built top-down, except the first time.” -
- Alan Perlis

2

“Programming in the Large” Steps
Design & Implement

• Program & programming style <-- we are here
• Common data structures and algorithms (done)
• Modularity
• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools

3

Goals of this Lecture

Help you learn about:
• Good program style
• Good programming style

Why?
• A well-styled program is more likely to be correct than a poorly-

styled program
• A well-styled program is more likely to stay correct (i.e. is more

maintainable) than a poorly-styled program
• A power programmer knows the qualities of a well-styled program,

and how to compose one quickly

4

Agenda

Program style
• Qualities of a good program

Programming style
• How to compose a good program quickly

5

Motivation for Program Style
Who reads your code?

• The compiler
• Other programmers

6

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec
cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s--sph)b=vdot(D,U=vcomb(-1.,P,s-cen)),u=b*b-vdot(U,U)+s-rad*s -
rad,u=u0?sqrt(u):1e31,u=b-u1e-7?b-u:b+u,tmin=u=1e-7&&u<tmin?best=s,u: tmin;return
best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; struct
sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s-ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s-cen
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l--sph)if((e=l -
kl*vdot(N,U=vunit(vcomb(-1.,P,l-cen))))0&&intersect(P,U)==l)color=vcomb(e ,l-
color,color);U=s-color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-
d*d);return vcomb(s-kt,e0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s-ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s-kd,
color,vcomb(s-kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}

This is a working ray tracer! (courtesy of Paul Heckbert)

7

Motivation for Program Style

Why does program style matter?
• Correctness

• The clearer a program is, the more likely it is to be
correct

• Maintainability
• The clearer a program is, the more likely it is to stay

correct over time

Good program ≈ clear program

Program Style Outline

Good program ≈ clear program

Qualities of a clear program
üUses appropriate names: descriptive, concise for local variables,

case, consistent for compound names, active names for functions
üUses common idioms
üReveals program structure (natural expressions, parenthesis,

breaking complex expressions, spacing, indentation, paragraphs
using blank lines)

üContains proper comments (function comments describe what, not
how, refer to parameters by name/type, and describe return value)

• Is modular

8

Choosing Names
Use descriptive names for globals and functions

• E.g., display, CONTROL, CAPACITY

Use concise names for local variables
• E.g., i (not arrayIndex) for loop variable

Use case judiciously
• E.g., Stack_push (Module_function)

CAPACITY (constant)
buf (local variable)

Use a consistent style for compound names
• E.g., frontsize, frontSize, front_size

Use active names for functions that do something
• E.g., getchar(), putchar(), Check_octal(), etc.

Not necessarily for functions that are something: sin(), sqrt() 9

10

Using C Idioms
Use C idioms

• Example: Set each array element to 1.0.
• Bad code (complex for no obvious gain)

• Good code (not because it’s vastly simpler—it isn’t!—but because it uses a
standard idiom that programmers can grasp at a glance)

• Don’t feel obliged to use C idioms that decrease clarity

i = 0;
while (i <= n-1)

array[i++] = 1.0;

for (i=0; i<n; i++)
array[i] = 1.0;

11

Revealing Structure: Expressions
Use natural form of expressions

• Example: Check if integer n satisfies j < n < k
• Bad code

• Good code

• Conditions should read as you’d say them aloud
• Not “Conditions shouldn’t read as you’d never say them in other

than a purely internal dialog!”

if (!(n >= k) && !(n <= j))

if ((j < n) && (n < k))

12

Revealing Structure: Expressions
Parenthesize to resolve ambiguity

• Example: Check if integer n satisfies j < n < k

• Common code

• Clearer code (maybe)

if ((j < n) && (n < k))

if (j < n && n < k) Does this
code work?

It’s clearer depending on whether your audience can be
trusted to know the precedence of all the C operators.
Use your judgment on this!

13

Revealing Structure: Expressions
Parenthesize to resolve ambiguity (cont.)

• Example: read and print character until end-of-file

• Bad code

• Good-ish code

• (Code with side effects inside expressions is never truly “good”,

but at least this code is a standard idiomatic way to write it in C)

while (c = getchar() != EOF)
putchar(c);

while ((c = getchar()) != EOF)
putchar(c);

Does this
code work?

14

Revealing Structure: Expressions
Break up complex expressions

• Example: Identify chars corresponding to months of year
• Bad code

• Good code – lining up things helps

• Very common, though, to elide parentheses

if ((c == 'J') || (c == 'F') || (c ==
'M') || (c == 'A') || (c == 'S') || (c
== 'O') || (c == 'N') || (c == 'D'))

if ((c == 'J') || (c == 'F') ||
(c == 'M') || (c == 'A') ||
(c == 'S') || (c == 'O') ||
(c == 'N') || (c == 'D'))

if (c == 'J' || c == 'F' || c == 'M' ||
c == 'A' || c == 'S' || c == 'O' ||
c == 'N' || c == 'D')

15

Revealing Structure

Perhaps better in this case: a switch statement

if (c == 'J' || c == 'F' || c == 'M' ||
c == 'A' || c == 'S' || c == 'O' ||
c == 'N' || c == 'D')

do_this();
else do_that();

switch (c) {
case 'J': case 'F': case 'M':
case 'A': case 'S': case 'O':
case 'N': case 'D':

do_this();
break;

default:
do_that();

}

16

Revealing Structure: Spacing
Use readable/consistent spacing

• Example: Assign each array element a[j] to the value j.
• Bad code

• Good code

• Often can rely on auto-indenting feature in editor

for (j=0;j<100;j++) a[j]=j;

for (j = 0; j < 100; j++)
a[j] = j;

17

Revealing Structure: Indentation
Use readable/consistent/correct indentation

• Example: Checking for leap year (does Feb 29 exist?)

legal = TRUE;
if (month == FEB)
{ if ((year % 4) == 0)

if (day > 29)
legal = FALSE;

else
if (day > 28)

legal = FALSE;
}

legal = TRUE;
if (month == FEB)
{ if ((year % 4) == 0)

{ if (day > 29)
legal = FALSE;

}
else
{ if (day > 28)

legal = FALSE;
}

}
Does this
code work? Does this

code work?

18

Revealing Structure: Indentation
Use “else-if” for multi-way decision structures

• Example: Comparison step in a binary search.
• Bad code

• Good code
if (x < a[mid])

high = mid – 1;
else if (x > a[mid])

low = mid + 1;
else

return mid;

if (x < a[mid])
high = mid – 1;

else
if (x > a[mid])

low = mid + 1;
else

return mid;

2
4
5
7
8

10
17

low=0

high=6

mid=3

10
x

a

19

Revealing Structure: “Paragraphs”
Use blank lines to divide the code into key parts

#include <stdio.h>
#include <stdlib.h>

/* Read a circle's radius from stdin, and compute and write its
diameter and circumference to stdout. Return 0 if successful. */

int main(void)
{ const double PI = 3.14159;

int radius;
int diam;
double circum;

printf("Enter the circle's radius:\n");
if (scanf("%d", &radius) != 1)
{ fprintf(stderr, "Error: Not a number\n");

exit(EXIT_FAILURE); /* or: return EXIT_FAILURE; */
}

…

20

Revealing Structure: “Paragraphs”
Use blank lines to divide the code into key parts

diam = 2 * radius;
circum = PI * (double)diam;

printf("A circle with radius %d has diameter %d\n",
radius, diam);

printf("and circumference %f.\n", circum);

return 0;
}

Composing Comments
Master the language and its idioms

• Let the code speak for itself
• And then…

Compose comments that add new information
i++; /* Add one to i. */

Comment paragraphs of code, not lines of code
• E.g., “Sort array in ascending order”

Comment global data
• Global variables, structure type definitions, field definitions, etc.

Compose comments that agree with the code
• And change as the code itself changes!!!

21

22

Composing Comments
Comment sections (“paragraphs”) of code, not lines of code

#include <stdio.h>
#include <stdlib.h>

/* Read a circle's radius from stdin, and compute and write its
diameter and circumference to stdout. Return 0 if successful. */

int main(void)
{ const double PI = 3.14159;

int radius;
int diam;
double circum;

/* Read the circle’s radius. */
printf("Enter the circle's radius:\n");
if (scanf("%d", &radius) != 1)
{ fprintf(stderr, "Error: Not a number\n");

exit(EXIT_FAILURE); /* or: return EXIT_FAILURE; */
}

…

23

Composing Comments

/* Compute the diameter and circumference. */
diam = 2 * radius;
circum = PI * (double)diam;

/* Print the results. */
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);

return 0;
}

Composing Function Comments

Describe what a caller needs to know to call the function
properly
• Describe what the function does, not how it works
• Code itself should clearly reveal how it works…
• If not, compose “paragraph” comments within definition

Describe input
• Parameters, files read, global variables used

Describe output
• Return value, parameters, files written, global variables affected

Refer to parameters by name

24

25

Composing Function Comments
Bad function comment

Describes how the function works

/* decomment.c */

/* Read a character. Based upon the character and
the current DFA state, call the appropriate
state-handling function. Repeat until
end-of-file. */

int main(void)
{

…
}

26

Composing Function Comments
Good function comment

• Describes what the function does

/* decomment.c */

/* Read a C program from stdin. Write it to
stdout with each comment replaced by a single
space. Preserve line numbers. Return 0 if
successful, EXIT_FAILURE if not. */

int main(void)
{

…
}

27

Using Modularity
Abstraction is the key to managing complexity

• Abstraction is a tool (the only one???) that people use to understand
complex systems

• Abstraction allows people to know what a (sub)system does without
knowing how

Proper modularity is the manifestation of abstraction
• Proper modularity makes a program’s abstractions explicit
• Proper modularity can dramatically increase clarity
• ⇒ Programs should be modular

However
• Excessive modularity can decrease clarity!
• Improper modularity can dramatically decrease clarity!!!
• ⇒ Programming is an art

28

Modularity Examples

Examples of function-level modularity
• Character I/O functions such as getchar() and putchar()
• Mathematical functions such as sin() and gcd()
• Function to sort an array of integers

Examples of file-level modularity
• (See subsequent lectures)

Program Style Summary

Good program ≈ clear program

Qualities of a clear program
• Chooses appropriate names (for variables, functions, …)
• Uses common idioms (but not at the expense of clarity)
• Reveals program structure (spacing, indentation, parentheses, …)
• Composes proper comments (especially for functions)
• Uses modularity (because modularity reveals abstractions)

29

Agenda

Program style
• Qualities of a good program

Programming style
• How to compose a good program quickly

30

31

Bottom-Up Design
Bottom-up design L

• Design one part of the system in detail
• Design another part of the system in detail
• Combine
• Repeat until finished

Bottom-up design in painting
• Paint part of painting in complete detail
• Paint another part of painting in complete detail
• Combine
• Repeat until finished
• Unlikely to produce a good painting

1 2 …

32

Bottom-Up Design
Bottom-up design in programming

• Compose part of program in complete detail
• Compose another part of program in complete detail
• Combine
• Repeat until finished
• Unlikely to produce a good program

1
2
3
4

…

5

3 4

1 2 …5

33

Top-Down Design
Top-down design J

• Design entire product with minimal detail
• Successively refine until finished

Top-down design in painting
• Sketch the entire painting with minimal detail
• Successively refine until finished

34

Top-Down Design
Top-down design in programming

• Define main() function in pseudocode with minimal detail
• Refine each pseudocode statement

• Small job ⇒ replace with real code
• Large job ⇒ replace with function call

• Repeat in (mostly) breadth-first order until finished

• Bonus: Product is naturally modular

1

2 3

4 5 …

35

Top-Down Design in Reality

Top-down design in programming in reality
• Define main() function in pseudocode
• Refine each pseudocode statement

• Oops! Details reveal design error, so…
• Backtrack to refine existing (pseudo)code, and proceed

• Repeat in (mostly) breadth-first order until finished

1

2 Oops

1’

2’ 3

1’

2’ 3

4 Oops

1’’

2’’ 3’

4’ 5 …

36

Example: Text Formatting

Functionality (derived from King Section 15.3)
• Input: ASCII text, with arbitrary spaces and newlines
• Output: the same text, left and right justified

• Fit as many words as possible on each 50-character line
• Add even spacing between words to right justify the text
• No need to right justify last line

• Assumptions
• “Word” is a sequence of non-white-space chars followed by a

white-space char or end-of-file
• No word is longer than 20 chars

37

"C is quirky, flawed, and an enormous success.
While accidents of history

surely helped,
it evidently satisfied a need for a
system implementation language efficient enough
to displace assembly language,
yet sufficiently abstract and fluent to describe
algorithms and interactions in a
wide variety of environments." -- Dennis Ritchie

"C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it
evidently satisfied a need for a system
implementation language efficient enough to
displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and
interactions in a wide variety of environments."
-- Dennis Ritchie

Example Input and Output
In

pu
t

O
ut

pu
t

38

Caveats

Caveats concerning the following presentation
• Function comments and some blank lines are omitted

• Because of space constraints
• Don’t do that!!!

• Design sequence is idealized
• In reality, typically much backtracking would occur

The main() Function

39

int main(void)
{ <clear line>

<read a word>
while (<there is a word>)
{ if (<word doesn’t fit on line>)

{ <write justified line>
<clear line>

}
<add word to line>
<read a word>

}
if (<line isn’t empty>)

<write line>
return 0;

}

The main() Function

40

enum {MAX_WORD_LEN = 20};
int main(void)
{ char word[MAX_WORD_LEN+1];

int wordLen;
<clear line>
wordLen = readWord(word);
while (<there is a word>)
{ if (<word doesn’t fit on line>)

{ <write justified line>
<clear line>

}
<add word to line>
wordLen = readWord(word);

}
if (<line isn’t empty>)

<write line>
return 0;

}

The main() Function

41

enum {MAX_WORD_LEN = 20};
int main(void)
{ char word[MAX_WORD_LEN+1];

int wordLen;
<clear line>
wordLen = readWord(word);
while (wordLen != 0)
{ if (<word doesn’t fit on line>)

{ <write justified line>
<clear line>

}
<add word to line>
wordLen = readWord(word);

}
if (<line isn’t empty>)

<write line>
return 0;

}

The main() Function

42

enum {MAX_WORD_LEN = 20};
int main(void)
{ char word[MAX_WORD_LEN+1];

int wordLen;
int lineLen;
<clear line>
wordLen = readWord(word);
while (wordLen != 0)
{ if (<word doesn’t fit on line>)

{ <write justified line>
<clear line>

}
<add word to line>
wordLen = readWord(word);

}
if (lineLen > 0)

<write line>
return 0;

}

The main() Function

43

enum {MAX_WORD_LEN = 20};
enum {MAX_LINE_LEN = 50};
int main(void)
{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];
int wordLen;
int lineLen;
<clear line>
wordLen = readWord(word);
while (wordLen != 0)
{ if (<word doesn’t fit on line>)

{ <write justified line>
<clear line>

}
lineLen = addWord(word, line, lineLen);
wordLen = readWord(word);

}
if (lineLen > 0)

<write line>
return 0;

}

The main() Function

44

enum {MAX_WORD_LEN = 20};
enum {MAX_LINE_LEN = 50};
int main(void)
{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];
int wordLen;
int lineLen;
<clear line>
wordLen = readWord(word);
while (wordLen != 0)
{ if (<word doesn’t fit on line>)

{ <write justified line>
<clear line>

}
lineLen = addWord(word, line, lineLen);
wordLen = readWord(word);

}
if (lineLen > 0)

puts(line);
return 0;

}

The main() Function

45

enum {MAX_WORD_LEN = 20};
enum {MAX_LINE_LEN = 50};
int main(void)
{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];
int wordLen;
int lineLen = 0;
int wordCount = 0;
<clear line>
wordLen = readWord(word);
while (wordLen != 0)
{ if (<word doesn’t fit on line>)

{ writeLine(line, lineLen, wordCount);
<clear line>

}
lineLen = addWord(word, line, lineLen);
wordLen = readWord(word);

}
if (lineLen > 0)

puts(line);
return 0;

}

The main() Function

46

enum {MAX_WORD_LEN = 20};
enum {MAX_LINE_LEN = 50};
int main(void)
{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];
int wordLen;
int lineLen = 0;
int wordCount = 0’
<clear line>
wordLen = readWord(word);
while (wordLen != 0)
{ if ((wordLen + 1 + lineLen) > MAX_LINE_LEN)

{ writeLine(line, lineLen, wordCount);
<clear line>

}
lineLen = addWord(word, line, lineLen);
wordLen = readWord(word);

}
if (lineLen > 0)

puts(line);
return 0;

}

The main() Function

47

enum {MAX_WORD_LEN = 20};
enum {MAX_LINE_LEN = 50};
int main(void)
{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];
int wordLen;
int lineLen = 0;
int wordCount = 0;
line[0] = '\0'; lineLen = 0; wordCount = 0;
wordLen = readWord(word);
while (wordLen != 0)
{ if ((wordLen + 1 + lineLen) > MAX_LINE_LEN)

{ writeLine(line, lineLen, wordCount);
line[0] = '\0'; lineLen = 0; wordCount = 0;

}
lineLen = addWord(word, line, lineLen);
wordLen = readWord(word);

}
if (lineLen > 0)

puts(line);
return 0;

}

Status

48

main

readWord writeLine addWord

The readWord() Function

49

int readWord(char *word)
{

<skip over white space>

<read chars, storing up to MAX_WORD_LEN in word>

<return length of word>
}

The readWord() Function

50

int readWord(char *word)
{

int ch;

/* Skip over white space. */
ch = getchar();
while ((ch != EOF) && isspace(ch))

ch = getchar();

<read up to MAX_WORD_LEN chars into word>

<return length of word>
}

Note the use of a function
from the standard library.
Very appropriate for your
top-down design to target
things that are already built.

The readWord() Function

51

int readWord(char *word)
{

int ch;
int pos = 0;

/* Skip over white space. */
ch = getchar();
while ((ch != EOF) && isspace(ch))

ch = getchar();

/* Read up to MAX_WORD_LEN chars into word. */
while ((ch != EOF) && (! isspace(ch)))
{ if (pos < MAX_WORD_LEN)

{ word[pos] = (char)ch;
pos++;

}
ch = getchar();

}
word[pos] = '\0';

<return length of word>
}

The readWord() Function

52

int readWord(char *word)
{

int ch;
int pos = 0;
ch = getchar();

/* Skip over white space. */
while ((ch != EOF) && isspace(ch))

ch = getchar();

/* Read up to MAX_WORD_LEN chars into word. */
while ((ch != EOF) && (! isspace(ch)))
{ if (pos < MAX_WORD_LEN)

{ word[pos] = (char)ch;
pos++;

}
ch = getchar();

}
word[pos] = '\0';

return pos;
}

readWord() gets away with murder
here, consuming/discarding one
character past the end of the word.

Status

53

main

readWord writeLine addWord

The addWord() Function

54

int addWord(const char *word, char *line, int lineLen)
{

<if line already contains words, then append a space>

<append word to line>

<return the new line length>
}

The addWord() Function

55

int addWord(const char *word, char *line, int lineLen)
{

int newLineLen = lineLen;

/* if line already contains words, then append a space. */
if (newLineLen > 0)
{ strcat(line, " ");

newLineLen++;
}

<append word to line>

<return the new line length>
}

The addWord() Function

56

int addWord(const char *word, char *line, int lineLen)
{

int newLineLen = lineLen;

/* if line already contains words, then append a space. */
if (newLineLen > 0)
{ strcat(line, " ");

newLineLen++;
}

strcat(line, word);

<return the new line length>
}

The addWord() Function

57

int addWord(const char *word, char *line, int lineLen)
{

int newLineLen = lineLen;

/* If line already contains some words, then append a space. */
if (newLineLen > 0)
{ strcat(line, " ");

newLineLen++;
}

strcat(line, word);

newLineLen += strlen(word);
return newLineLen;

}

Status

58

main

readWord writeLine addWord

The writeLine() Function

59

void writeLine(const char *line, int lineLen, int wordCount)
{ int i;

<compute number of excess spaces for line>

for (i = 0; i < lineLen; i++)
{ if (line[i] != ' ')

putchar(line[i])
else
{

<compute additional spaces to insert>

<print a space, plus additional spaces>

<decrease extra spaces and word count>
}

}
putchar('\n');

}

The writeLine() Function

60

void writeLine(const char *line, int lineLen, int wordCount)
{ int i, extraSpaces;

/* Compute number of excess spaces for line. */
extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)
{ if (line[i] != ' ')

putchar(line[i])
else
{

<compute additional spaces to insert>

<print a space, plus additional spaces>

<decrease extra spaces and word count>
}

}
putchar('\n');

}

The writeLine() Function

61

void writeLine(const char *line, int lineLen, int wordCount)
{ int i, extraSpaces, spacesToInsert;

/* Compute number of excess spaces for line. */
extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)
{ if (line[i] != ' ')

putchar(line[i])
else
{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

<print a space, plus additional spaces>

<decrease extra spaces and word count>
}

}
putchar('\n');

}

The number
of gaps

The writeLine() Function

62

void writeLine(const char *line, int lineLen, int wordCount)
{ int i, extraSpaces, spacesToInsert, j;

/* Compute number of excess spaces for line. */
extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)
{ if (line[i] != ' ')

putchar(line[i])
else
{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

/* Print a space, plus additional spaces. */
for (j = 1; j <= spacesToInsert + 1; j++)

putchar(' ');

<decrease extra spaces and word count>
}

}
putchar('\n');

}

Example:
If extraSpaces is 10
and wordCount is 5,
then gaps will contain
2, 2, 3, and 3 extra
spaces respectively

The writeLine() Function

63

void writeLine(const char *line, int lineLen, int wordCount)
{ int i, extraSpaces, spacesToInsert, j;

/* Compute number of excess spaces for line. */
extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)
{ if (line[i] != ' ')

putchar(line[i])
else
{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

/* Print a space, plus additional spaces. */
for (j = 1; j <= spacesToInsert + 1; j++)

putchar(' ');

/* Decrease extra spaces and word count. */
extraSpaces -= spacesToInsert;
wordCount--;

}
}
putchar('\n');

}

Status

64

main

readWord writeLine addWord

Complete!

65

Top-Down Design and Modularity

Note: Top-down design naturally yields modular code

Much more on modularity in upcoming lectures

Summary

Program style
• Choose appropriate names (for variables, functions, …)
• Use common idioms (but not at the expense of clarity)
• Reveal program structure (spacing, indentation, parentheses, …)
• Compose proper comments (especially for functions)
• Use modularity (because modularity reveals abstractions)

Programming style
• Use top-down design and successive refinement
• But know that backtracking inevitably will occur
• And give high priority to risky modules (see Appendix)

66

Are we there yet?
Now that the top-down design is done, and the program

“works,” does that mean we’re done?

No. There are almost always things to improve, perhaps by
a bottom-up pass that better uses existing libraries.

The second time you write the same program, it turns out
better.

68

"C is quirky, flawed, and an enormous success.
While accidents of history

surely helped,
it evidently satisfied a need for a
system implementation language efficient enough
to displace assembly language,
yet sufficiently abstract and fluent to describe
algorithms and interactions in a
wide variety of environments." -- Dennis Ritchie

"C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it
evidently satisfied a need for a system
implementation language efficient enough to
displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and
interactions in a wide variety of environments."
-- Dennis Ritchie

What’s wrong with this output?
In

pu
t

O
ut

pu
t

69

"C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it
evidently satisfied a need for a system
implementation language efficient enough to
displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and
interactions in a wide variety of environments."
-- Dennis Ritchie

What’s better with this output?
Be

tte
r

"C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it
evidently satisfied a need for a system
implementation language efficient enough to
displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and
interactions in a wide variety of environments."
-- Dennis Ritchie

Ad
eq

ua
te

Challenge problem
Design a function int spacesHere(int i, int k, int n)

that calculates how many marbles to put into the ith jar, assuming that there are nmarbles to
distribute over k jars.

(1) the jars should add up to n, that is,

{s=0; for(i=0;i<k;i++) s+=spacesHere(i,k,n); assert (s==n);}

or in math notation, ∑i=0 spacesHere(i,k,n)	 	=		n

(2) marbles should be distributed evenly—the "extra" marbles should not bunch up in nearby jars.

HINT: You should be able to write this in one or two lines, without any loops.

My solution used floating-point division and rounding; do "man round" and pay attention to where
that man page says "include <math.h>".

k-1

71

Appendix: The “justify” Program

#include <stdio.h>
#include <ctype.h>
#include <string.h>

enum {MAX_WORD_LEN = 20};
enum {MAX_LINE_LEN = 50};

Continued on next slide

72

Appendix: The “justify” Program
/* Read a word from stdin. Assign it to word. Return the length

of the word, or 0 if no word could be read. */

int readWord(char *word)
{ int ch, pos = 0;

/* Skip over white space. */
ch = getchar();
while ((ch != EOF) && isspace(ch))

ch = getchar();

/* Store chars up to MAX_WORD_LEN in word. */
while ((ch != EOF) && (! isspace(ch)))
{ if (pos < MAX_WORD_LEN)

{ word[pos] = (char)ch;
pos++;

}
ch = getchar();

}
word[pos] = '\0';

/* Return length of word. */
return pos;

}

Continued on next slide

73

Appendix: The “justify” Program
/* Append word to line, making sure that the words within line are

separated with spaces. lineLen is the current line length.
Return the new line length. */

int addWord(const char *word, char *line, int lineLen)
{

int newLineLen = lineLen;

/* If line already contains some words, then append a space. */
if (newLineLen > 0)
{ strcat(line, " ");

newLineLen++;
}

strcat(line, word);
newLineLen += strlen(word);
return newLineLen;

}

Continued on next slide

74

Appendix: The “justify” Program
/* Write line to stdout, in right justified form. lineLen

indicates the number of characters in line. wordCount indicates
the number of words in line. */

void writeLine(const char *line, int lineLen, int wordCount)
{ int extraSpaces, spacesToInsert, i, j;

/* Compute number of excess spaces for line. */
extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)
{ if (line[i] != ' ')

putchar(line[i]);
else
{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

/* Print a space, plus additional spaces. */
for (j = 1; j <= spacesToInsert + 1; j++)

putchar(' ');

/* Decrease extra spaces and word count. */
extraSpaces -= spacesToInsert;
wordCount--;

}
}
putchar('\n');

} C
on

tin
ue

d
on

 n
ex

t s
lid

e

75

Appendix: The “justify” Program

/* Read words from stdin, and write the words in justified format
to stdout. Return 0. */

int main(void)
{

/* Simplifying assumptions:
Each word ends with a space, tab, newline, or end-of-file.
No word is longer than MAX_WORD_LEN characters. */

char word[MAX_WORD_LEN + 1];
char line[MAX_LINE_LEN + 1];
int wordLen;
int lineLen = 0;
int wordCount = 0;

line[0] = '\0'; lineLen = 0; wordCount = 0;
…

Continued on next slide

76

Appendix: The “justify” Program

…

wordLen = readWord(word);
while ((wordLen != 0)
{

/* If word doesn't fit on this line, then write this line. */
if ((wordLen + 1 + lineLen) > MAX_LINE_LEN)
{ writeLine(line, lineLen, wordCount);

line[0] = '\0'; lineLen = 0; wordCount = 0;
}
lineLen = addWord(word, line, lineLen);
wordCount++;
wordLen = readWord(word);

}
if (lineLen > 0)

puts(line);
return 0;

}

Aside: Least-Risk Design
Design process should minimize risk

Bottom-up design
• Compose each child module

before its parent
• Risk level: high

• May compose modules
that are never used

Top-down design
• Compose each parent module

before its children
• Risk level: low

• Compose only those modules
that are required

77

5

3 4

2 1 …

1

2 3

4 5 …

Aside: Least-Risk Design
Least-risk design

• The module to be composed next is the one
that has the most risk

• The module to be composed next is the one
that, if problematic, will require redesign of
the greatest number of modules

• The module to be composed next is the one
that poses the least risk of needing to
redesign other modules

• The module to be composed next is the one
that poses the least risk to the system as a whole

• Risk level: minimal (by definition)

78

2

3 4

1 5 …

Aside: Least-Risk Design

Recommendation
• Work mostly top-down
• But give high priority to risky modules
• Create scaffolds and stubs as required

79

