"Princeton University

Computer Science 217: Introduction to Programming Systems

The C Programming Language

Part 2

W s
—— Mg S
— | gl .'f—_'- = hded
O ot 18 =2In
L 't = F e
} - . -7y
e ret
|
Y=
e ‘;_.
=ddefine 0L eee i o=
N~ o=
1L c
Lad .
A — =
tdl e o —a
=T
| PV § | 2
1 C;— = UN
-_
=X
&)

-
Agenda

Data Types
Operators
Statements

/O Facilities

-

Operators

Computers represent integers as bits
Arithmetic operations: +, -, *, /, etc.
Bit operations: and, or, xor, shift, etc.

Typical language design (1970s): provide abstraction
so that one does not confuse integers with their
representation

-

Operators

Decisions

* Provide typical arithmetic operators: + - * / %

Provide typical relational operators: == '= < <= > >=

« Each evaluatesto 0 = FALSE or 1 = TRUE

Provide typical logical operators: ! && ||
 Each interprets 0 = FALSE, #0 = TRUE
« Each evaluatesto 0 = FALSE or 1 =TRUE

Provide bitwise operators: ~ & | * >> <<

Provide a cast operator: (type)

Y

Aside: Logical vs. Bitwise Ops

Logical NOT (!) vs. bitwise NOT (~)
! 1 (TRUE) = 0 (FALSE)

Decimal Binary
1 00000000 00O0OOOOOO 0OOOOOOO 0OOOOOO1
! 1 00000000 0O0OOOOOOO 0OOOOOOO 0OOOOOOO

e~ 1 (TRUE) = -2 (TRUE)

Decimal Binary
1 00000000 00O0OOOOOO 0OOOOOOO 0OOOOOO1
~1 111117111 11111111 11111111 11111110

Implication:
» Use logical NOT to control flow of logic
« Use bitwise NOT only when doing bit-level manipulation

Aside: Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)
-2 (TRUE) && 1 (TRUE) = 1 (TRUE)

Decimal Binary

2 00000000 0OOOOOOO 00000OOOO 0OOOOO1O
& 1 00000000 000OOOOOO 0OOOOOOO OOOOOOO1

1 00000000 00000000 00000000 0OOOOOOO1

«2 (TRUE) & 1 (TRUE) = 0 (FALSE)

Decimal Binary

2 00000000 00000000 0OOOOOOOO 0OOOOOO1O0
& 1 00000000 00000000 0OOOOOOO o0OOOOOOO1

0O 00000000 00000000 00000000 0OOOOOOO

-
Aside: Logical vs. Bitwise Ops

Implication:
« Use logical AND to control flow of logic
» Use bitwise AND only when doing bit-level manipulation

Same for logical OR (||) and bitwise OR (|)

"

-

Assignment Operator

Typical programming
language of 1970s:

Statements, Expressions
stmt ::=

a:=exp

if exp then stmt else stmt
while exp do stmt

begin stmtlist end

stmtlist ::= stmt | stmtlist; stmt

exp ;=
id | exp+exp | exp-exp | —exp
| (exp) | ...

C language: assignment

IS an expression!
stmt ::=

exp ;

{ stmtlist }

if (exp) stmt else stmt
while (exp) stmt

stmtlist ::= stmt | stmtlist stmt

exp ;=
id | exp+exp | exp-exp | —exp

| id=exp | exp,exp | exp?exp:exp
| (exp) | ...

Y

-
Assignment Operator

Decisions
* Provide assignment operator. =
» Side effect: changes the value of a variable
» Evaluatesto the new value of the variable

Assignment Operator Examples

Examples

/* Side effect: assign 0 to 1i.
Evaluate to O.

/* Side effect: assign 0 to 1i.
Evaluate to O.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) !'= EOF)
/* Read a character.
Side effect: assign that character to 1i.
Evaluate to that character.
Compare that character to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

j =1 =0; /* Assignment op has R to L associativity */

10

Special-Purpose Assignment Operators

Decisions
* Provide special-purpose assignment operators:
+= == *= /= ~= &= |= e L=
Examples
i+=j same as i =1 + J
i /=3j same as i =1i / j
i |=] same as 1 =1 | j
i >>= j same as 1 = i >> jJ

>>=

11

Special-Purpose Assignment Operators

Y
&)
Es:mﬂi@

Increment and decrement operators: ++ --

* Prefix and postfix forms

Examples
(1) 1 = 5;
J = ++i;
(2) 1i = 5; \
J =i+
(3) 1 = 5;
J o= +4+i + +4+i;
(4) 1 = 5;
J o= i++ + it++;

What is the
value of i? Of j?

12

-

Memory allocation

Typical programming
language of 1970s:

Special program statement
to allocate a new object
stmt ::=

new p

This is not so different from
Java’s p=new(MyClass)

Difficulties:

1.system standard allocator could
be slow, or inflexible

2.\What about deallocation?

» Explicit “free” leads to bugs
« Automatic garbage collection too
expensive?

C language
Nothing built-in

*malloc, free functions provided in
standard library

«allow programmers to roll their
own allocation systems

Difficulties:

1.System standard allocator could
be slow, or inflexible

(but that’s mitigated by roll-your-own)

2. Explicit “free” leads to bugs
*Turns out, by now we know, automatic
garbage collectionisn'ttoo expensive
after all!

5

-

Sizeof Operator

Malloc function needs to be told how many bytes to
allocate

struct foo {int a, b; float c;} *p;

p = malloc(12); /* this is correct but not portable */

Issue: How can programmers determine data sizes?

Rationale:
* The sizes of most primitive types are unspecified
« Sometimes programmer must know sizes of primitive types
* E.g. when allocating memory dynamically
« Hard code data sizes = program not portable

« C must provide a way to determine the size of a given data type
programmatically

Y

-

Sizeof Operator

Decisions
 Provide a sizeof operator
« Applied at compile-time
 Operand can be a data type
* Operand can be an expression
« Compilerinfers a data type

Examples, on CourselLab
e sizeof (int) = 4

 When i is a variable of type int...
e sizeof (i) =4

e sizeof (1+1)
e sizeof (i++ * ++i - 5)

What is the
value?

)

-

Other Operators

Issue: What other operators should C have?

Decisions
* Function call operator
« Should mimic the familiar mathematical notation
e function (argl, arg2, ..)
Conditional operator: ?:
* The only ternary operator
+ See King book
Sequence operator: ,
* See King book
Pointer-related operators: & *
» Address of, dereference (described in precepts)
Structure-related operators: . ->

» Structure field select (described in precepts)

<)

Operators Summary: C vs. Java

Java only
« >>> right shift with zero fill
* new create an object
« instanceof is left operand an object of class right operand?
e p.f object field select
C only
e p.f£f structure field select
« * dereference
¢« p—>f dereference then structure memberselect: (*p).f
& address of
., sequence

« sizeof compile-time size of

“
A [
®

17

Operators Summary: C vs. Java

Related to type boolean:
« Java: Relational and logical operators evaluate to type boolean
« C: Relational and logical operators evaluate to type int
« Java: Logical operators take operands of type boolean

« C: Logical operators take operands of any primitive type or memory
address

18

-
Agenda

Data Types
Operators
Statements

/O Facilities

J

-
Sequence Statement

Issue: How should C implement sequence?

Decision
« Compound statement, alias block

{

statementl
statement?2

2

-

Selection Statements

Issue: How should C implement selection?

Decisions

- if statement, for one-path, two-path decisions

if (expr)
statementl

if (expr)
statementl
else

statement?2

0 = FALSE
non-0 = TRUE

Y

Selection Statements

Decisions (cont.)

« switch and break statements, for multi-path decisions on a
single integerExpr

What happens
if you forget
break?

switch (integerExpr)
{ case integerLiterall:

break ; *”””/”/”””/

case integerLiterall:

break;

default:

22

Repetition Statements

Issue: How should C implement repetition?

Decisions

- while statement;test at leading edge

while (expr)

statement

« for statement;testat leading edge, increment at trailing edge

for (initialExpr;

statement

testExpr;

incrementExpr)

- do..while statement; test at trailing edge

do

statement

while (expr);

0 = FALSE
non-0 = TRUE

23

-

Declaring Variables

Issue: Should C require variable declarations?

Rationale:

* Declaring variables allows compiler to check spelling (compile-time error

messages are easier for programmer than debugging strange behavior at run time!)

» Declaring variables allows compiler to allocate memory more
efficiently

*J

-
Where are variables declared?

Typical 1960s language: C language:
*Global variables *Global variables

| ocal variables can be
declared at beginning of any

Typical 1970s language: {block}, e.g.,
*Global variables {inti=6, j;

-Local variables declared just ="
before function body if (i>])

{int x; x=i+j; return x;}

else {int y; y=i-j; return y;}

} scope of variable y ends
at matching close brace

Repetition Statements

Decisions (cont.)

« Cannot declare loop control variable in for statement

for (int
/* Do

i=20; i< 10;
something */

it++)

int 1i;

for (1 =
/* Do

0; i < 10; i++)
something */

lllegal in C
(nobody thought of
thatidea in 1970s)

Legal in C

26

Declaring Variables

Decisions (cont.):

« Declaration statements must appear before any other kind of

statementin compound statement

int 1i;

/* Non-declaration
stmts that use i. */

i = i+1;

int j;

/* Non-declaration
stmts that use j. */

j = j+1;

lllegal in C
(nobody thoughtof
thatidea in 1970s)

int 1i;
int j;

/* Non-declaration
stmts that use 1i.

i=i+1;

/* Non-declaration
stmts that use j.

j = j+1;

*/

*/

Legal in C

27

-

Other Control Statements

Issue: What other control statements should C provide?

Decisions
« break statement (revisited)
» Breaks out of closest enclosing switch orrepetition statement
 continue statement
« Skips remainder of current loop iteration
» Continues with next loop iteration
* When used within for, still executes incrementExpr
« goto statement

« Jump to specified label

%)

-

Declaring Variables

Decisions:
* Require variable declarations
* Provide declaration statement
« Programmer specifies type of variable (and other attributes too)

Examples
e int 1i;
e int i, J;

eint 1 = 5;

e const int i = 5; /* value of i cannot change */
e static int i; /* covered later in course */
- extern int i; /* covered later in course */

2

-

Computing with Expressions

Issue: How should C implement computing with
expressions?

Decisions:

* Provide expression statement
expression ;

%

Computing with Expressions

Examples
i=25;
/* Side effect: assign 5 to 1i.
Evaluate to 5. Discard the 5. */
j =i+ 1;

/* Side effect: assign 6 to j.
Evaluate to 6. Discard the 6. */

printf ("hello") ;
/* Side effect: print hello.
Evaluate to 5. Discard the 5. */

i+ 1;
/* Evaluate to 6. Discard the 6. */

5;
/* Evaluate to 5. Discard the 5. */

31

Statements Summary: C vs. Java
Declaration statement:

« Java: Compile-time error to use a local variable before specifying its
value

« C: Run-time error to use a local variable before specifying its value

final and const
« Java: Has £inal variables
« C: Has const variables

Expression statement

« Java: Only expressions that have a side effect can be made into
expression statements

« C: Any expression can be made into an expression statement

32

Statements Summary: C vs. Java
Compound statement:

« Java: Declarations statements can be placed anywhere within
compound statement

« C: Declaration statements must appear before any other type of
statement within compound statement

if statement
- Java: Controlling expr must be of type boolean

« C: Controlling expr can be any primitive type or a memory address
(0 = FALSE, non-0 = TRUE)

while statement
« Java: Controlling expr must be of type boolean

« C: Controlling expr can be any primitive type or a memory address
(0 = FALSE, non-0 = TRUE)

33

Statements Summary: C vs. Java

do..while statement
« Java: Controlling expr must be of type boolean

« C: Controlling expr can be of any primitive type or a memory
address (0 = FALSE, non-0 = TRUE)

for statement
« Java: Controlling expr must be of type boolean

« C: Controlling expr can be of any primitive type or a memory
address (0 = FALSE, non-0 = TRUE)

Loop control variable
« Java: Can declare loop control variable in initexpr
« C: Cannot declare loop control variable in initexpr

34

Statements Summary: C vs. Java

break statement

« Java: Also has “labeled break” statement
e C: Does not have “labeled break” statement

continue statement

« Java: Also has “labeled continue” statement
e C: Does not have “labeled continue” statement

goto statement

« Java: Not provided
« C: Provided (but don’ t use it!)

“
A [
®

35

-
Agenda

Data Types
Operators
Statements

1/O Facilities

)

-

/O Facilities

Issue: Should C provide I/O facilities?

(many languages of the 1960s / 1970s had built-in special-
purpose commands for input/output)

Thought process
« Unix provides the file abstraction

» A file is a sequence of characters with an indication of the current

position
Unix provides 3 standard files
« Standard input, standard output, standard error
C should be able to use those files, and others
|/O facilities are complex
C should be small/simple

"

-

/O Facilities

Decisions
« Do not provide I/O facilities in the language

 Instead provide I/O facilities in standard library
« Constant. EOF

 Data type: FILE (described laterin course)
 Variables: stdin, stdout, and stderr
 Functions: ...

%

-

Reading Characters

Issue: What functions should C provide for reading
characters?

Thought process
* Need function to read a single character from stdin

... And indicate failure

2

-

Reading Characters

Decisions
* Provide getchar () function”
* Define getchar () toreturn EOF upon failure
« EOF is a special non-characterint
« Make return type of getchar () widerthan char
 Make it int; that's the natural word size

Reminder
« There is no such thing as “the EOF character”

*actually, a macro...

©J

e
Writing Characters

Issue: What functions should C provide for writing
characters?

Thought process
« Need function to write a single characterto stdout

Decisions
* Provide putchar () function
* Define putchar () to have int parameter
* For symmetry with getchar ()

Y

-

Reading Other Data Types

Issue: What functions should C provide for reading data

of other primitive types?

Thought process

« Must convert external form (sequence of character codes) to internal

form
* Could provide getshort(),getint(),getfloat (), etc.

« Could provide parameterized function to read any primitive type of
data

)

-

Reading Other Data Types

Decisions
* Provide scanf () function
« Can read any primitive type of data

» First parameter is a format string containing conversion
specifications

v/

Reading Other Data Types

'1' '2'

'3'

| Y

|

011000010110001001100011

l

L

scanf ("%$d4d",

&i) ;

|

What is this
ampersand?

Covered later
In course.

00000000000000000000000001111011

123

See King book for conversion specifications

44

e
Writing Other Data Types

Issue: What functions should C provide for writing data
of other primitive types?

Thought process
* Must convertinternal form to external form (sequence of character
codes)
* Could provide putshort(),putint(),putfloat(), etc.

« Could provide parameterized function to write any primitive type of
data

©J

-
Writing Other Data Types

Decisions
* Provideprint£ () function
« Can write any primitive type of data

» First parameter is a format string containing conversion
specifications

*J

Writing Other Data Types

123

{

00000000000000000000000001111011

l

printf("sd", 1i);

|

011000010110001001100011
| | | |

|1| '2' '3'

See King book for conversion specifications

47

-

Other I/O Facilities

Issue: What other I/O functions should C provide?

Decisions
« fopen ():Open a stream
« fclose ():Close a stream
« fgetc (): Read a characterfrom specified stream
« fputc (): Write a character to specified stream
« gets () Readalinefromstdin—Brain-damaged, never use this!
« fgets ():Read a line/string from specified stream
« fputs (): Write a line/string to specified stream
« £scanf () : Read data from specified stream
« fprintf () : Write data to specified stream

Described in King book, and later in the course after covering
files, arrays, and strings

®J

-
Summary

C design decisions and the goals that affected them
« Data types
* Operators
« Statements
« 1/O facilities

Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

v

Appendix: The Cast Operator

Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
« Compiler generates code
At run-time, code performs conversion

f 111000001110110110000000000000000 -27.375

i = (int)f

i /11111111111111111111111111100101 -27

50

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
« Compiler generates code
At run-time, code performs conversion

f 111000001110110110000000000000000 -27.375

d = (double)f

d 11000000001110110110000000000000 -27 .375
00000000000000000000000000000000

51

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
« Compiler generates code
At run-time, code performs conversion

1 |00000000000000000000000000000010 2

¢ = (char)i

C 00000010 2

52

Appendix: The Cast Operator

(4) Cast between integer types of same size:
« Compiler generates no code
« Compiler views given bit-pattern in a different way

i (11111111111111111111111111111110 -2

u = (unsigned int)i

u (111111111111111111131111111111110 42949677294

53

