Topic 16: Issues in compliling functional
and object-oriented languages

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Compiling functional and OO languages

General structure of compiler unchanged

Main challenges in functional languages:
 semantic analysis: parametric polymorphism
* code generation: higher-order functions

Main challenges in object-oriented languages:
« semantic analysis classes and inheritance,

access restrictions (private/public,...)
 code generation: method dispatch

Also: garbage collection (Java, ML, Haskell, ...)

Parametric polymorphism -- motivation

fun ilist_length (I: int_list) : nat := ...
' \virtually identical

fun clist_length (I: char_list) : nat := ... = definitions

fun slist_length (I: string_list) : nat := ... —

a: type variable

/

fun list_length (I: a list) : nat :=
case | with nil =>» 0 | (::t{ => 1 +list_length t

t:a list Java

» benefits for programmer: class List <T>{
* code reuse; flexible libraries
* code clarity: same behavior/structure =» same code }
 modularity / information hiding

* benefits for compiler: no code duplication =» no duplicate analysis

Polymorphism — code generation strategies

« monomorphization: compiler identifies all possible instantiations,
generates separate code for each version, and calls the appropriate
version (type information at call sites)

+ conceptually simple — “core language” remains monomorphic

+ instantiations can use different representations, and be optimized
more specifically

- requires whole-program compilation (identify all instantiations);
hence no separately compiled (polymorphic) libraries!

- code duplication
* monomorphization at JIT compilation
- not every compiler / language / application suitable for JIT

 uniform representation for all types (“boxed”, ie one pointer
indirection — even for scalar types like int, float)
+ avoids code duplication and JIT overhead
- memory overhead; pointer indirection costly at runtime

 “intensional types” / dynamic dispatch: maintain runtime
representations of types, use this to identify which code to invoke
- memory overhead, runtime overhead

Polymorphism — type analysis

Intuitive interpretation of type variables: “for all’

 explicit polymorphism:
- position of universal quantification syntactically explicit

- in particular: non-top level quantification allowed
(nat = (forall a, a list)) = nat),

Very expressive! Only type checking!
* implicit polymorphism®*;

universal quantification only at top-level, hence syntactically redundant
(a list = nat)

Algorithmically more feasible (inference!), and sufficient for many application (=» ML)

* formal distinction between types and type schemes...

Polymorphism — type substitution

Substitution X[t/ a]: instantiate a type variable ain X to t

(axp—=>v-=>B)[nat/a]=natxp-=>yv2P

(axB—=>v—=>PB)[nat/B]=axnat > v > nat
(axB=2>v—=2>B)[(Olist)/ v]=axp > dlist> [

(axp > ep)[(glist)/ [=axp->5list>p

a s implicitly all-quantified here, too — substitution is
“capture-avoiding’, like a-renaming of term variables.

Polymorphism — type inference a la Hindley-Milner

ML's type system: types can be ordered by the “is-an-
instantiation-of” relationship

axp2y—=2p

T

natxp-=>v->0 (alist)yxp=>y—=2>p| = |axnat—=>y > nat

N~

natxnat—>y->nat| - |(alist)x nat 2> y = nat

(a list) x nat = real - nat

(nat list) x nat = real = nat

Polymorphism — type inference a la Hindley-Milner

axp=2>y—=>P

//7

natx—>vy—>p (alishy x>y 2> B axnat - y - nat

\N

* |natxnat—>y-—>nat| = |(alist)xnat 2>y - nat

(a list) x nat = real = nat

(nat list) x nat > real = nat

Thus: two types are either
 Incompatible, eg. int vs real, int vs int list, int vs a list, or
« unifiable: there are are substitutions that make them “equal”:
int vs int (substitutions: empty, empty)
int vs a (substitutions: empty, int/ a)
int x o list vs a x B (substitutions: empty, [int/ a, alist/ 3])
If they are unifiable, there is a (unique) most general type.

Polymorphism — type inference a la Hindley-Milner

Hindley-Milner type inference:

* recursively walk the code structure, as in lecture on type systems,
and return most general type scheme

 when necessary (eg for matching type of a function):
perform unification — report type error if not-unifiable

Algorithm W (cf function “infer” in slides on Types)

can now include TypeVars

T~ _ :
fun W (Z: context) (e:expr): (Type x) option = ... (*next slide ..”)
_—

assumptions; maps term variables to types

Auxiliary function: Unify: (Type x Type) -> option

Polymorphism — type inference a la Hindley-Milner

fun W (Z: context) (e:expr): (Type x) option =
case e of

apply subst 1 to types in 2

| fa=>case W2 aof S~ apply subst T to type U
Some (T, 1) => case W (1) f of pd
Some (U,) => case Unify (U, T -> () of
Some) => S?ue/ (Bw, TOw)
... (*all other cases: None*)
| (*other cases of e*) fresh type variable
~ Damas, Luis; Milner, Robin (1982): Principal type-schemes for
Detalls: fnctional programs: 9th Symposium on Principles of programming
languages (POPL'82). ACM. pp. 207-212.

For full ML, inference is DEXPTIME-complete - but in practice: linear/polytime

Higher-order functions

Functional languages: arguments and return values can be functions.

type intfun = int = int

fun foo () : intfun —___ retunvalue

return (fun z =>z + 5); is a function

var f = foo ();
f2:
function parameter
s of functional type fun apply42 (f:intfun): int = return (f 42);

var q = apply42 foo

Also with polymorphism: map (f: a =) = alist = B list

Higher-order functions

type intfun = int = int

fun foo () : intfun = Q: where is the code for funz =>z +5
return (fun z => z + 5); located, i.e. what address should we
jump to when calling f 27

var f = foo ();
f2;

Higher-order functions

type intfun = int = int

fun foo () : intfun = Q: where is the code for funz =>z +5
return (fun z => z + 5); located, i.e. what address should we
jump to when calling f 27
var f = foo ();
f2;

A: have compiler generate a fresh name, bar, and emit code for the function
fun bar z => z + 5. Have foo return the address of / label bar.
Then use jump-register instruction (indirect jump) for call.

Higher-order functions

type intfun = int = int

fun foo () : intfun = Q: where is the code for funz =>z +5
return (fun z => z + 5); located, i.e. what address should we
jump to when calling f 27
var f = foo ();
f2;

A: have compiler generate a fresh name, bar, and emit code for the function
fun bar z => z + 5. Have foo return the address of / label bar.
Then use jump-register instruction (indirect jump) for call.

Call to apply42 can pass
address of foo as argument.
Use jump-register for call f 42.

fun apply4?2 (f:intfun): int = return (f 42);
var q = apply42 foo

But what about this?

fun add (n:int) : intfun =
let fun h (m:int) = n+m
in h end

fun twice (f: intfun): intfun =
let fun g(x:int) = f (f x)
in g end

var addFive: intfun = add 5
var addTen : intfun = twice addFive

At runtime, calls add 5, add 42 should
yield functions that behave like
h; (m:int) = 5+m
hy, (M:int) = 42+m.

But what about this?

fun add (n:int) : intfun =
let fun h (m:int) = n+m
in h end

fun twice (f: intfun): intfun =
let fun g(x:int) = f (f x)
in g end

var addFive: intfun = add 5
var addTen : intfun = twice addFive

At runtime, calls add 5, add 42 should
yield functions that behave like
h; (m:int) = 5+m
hy, (M:int) = 42+m.

Each h, outlives the stackframe of its
static host, add, where h, would
usually look up n following the static
link, -- but add’s frame is deallocated
upon exit from add.

Similarly, twice addFive should yield
J.qqrive(X:int) = addFive (addFive x)

but g; needs to lookup f in stackframe of twice.

Combination of higher-order functions and nested function definitions conflicts with stack
discipline of frame stack and with holding arguments and local variables in the stack frame.

Higher-order functions

Combination of higher-order functions and nested function definitions conflicts with stack
discipline of frame stack and with holding arguments and local variables in the stack frame.

type intfun = int - int type intfun = int - int
fun add (n:int) : intfun = fun h (n:int) (m:int) = n+m
let fun h (n:int) (m:int) = n+m
in hnend fun add (n:int) : intfun =hn
fun twice (f: intfun): intfun = fun g (f:intfun) (x:int) = f(f x)
let fun g (f:intfun) (x:int) = f (f x)
ingfend fun twice (f: intfun): intfun = g f
var addFive: intfun = add 5 var addFive: intfun = add 5
var addTen : intfun = twice addFive var addTen : intfun = twice addFive
parameter lifting parameter lifting + block raising

= A-lifting

Higher-order functions

Combination of higher-order functions and nested function definitions conflicts with stack
discipline of frame stack and with holding arguments and local variables in the stack frame.

type intfun = int - int type intfun = int - int
fun add (n:int) : intfun = fun h (n:int) (m:int) = n+m
let fun h (n:int) (m:int) = n+m
in hnend fun add (n:int) : intfun =hn
fun twice (f: intfun): intfun = fun g (Fintfun) (x:int) = f(f x)
let fun g (f:intfun) (x:int) = f (f x)
ingfend fun twice (f: intfun): intfun = g f
var addFive: intfun = add 5 var addFive: intfun = add 5
var addTen : intfun = twice addFive var addTen : intfun = twice addFive
parameter lifting parameter lifting + block raising
= A-lifting

Need to pair up code pointers with data for host-function’s variables / parameters,
le construct representations of h n (like h 5, h 42) and of g f (like g addFive).
These structures need to be allocated on the heap.

Closures

“‘codetdata” pairs: representation of functions that have been provided
with some of their arguments.

 “code”: label/address of code to jump to
« “data”. several representations possible

a) pointer to allocation record of host function’s invocation: * ”
« host function must still be heap-allocated to prevent stale pointers
« caller of closure creates activation record based on data held in
closure, deposits additional arguments at known offsets and
jumps to the code pointer provided in closure
 garbage collector can collect allocation records

sl: sl:
code(h) code(h)
m: 33 m: 49
n5(33) h,,(49)
Activation records held in heap, linked by static links

Closures

b) pointer to a record (environment) in heap that holds the host function’s
escaping variables (ie exactly the variables the inner function might need)
* host function can be allocated on stack, receive its arguments as
before, and hold non-escaping variables, spills, etc in stack frame
* New “local variable™ EP points to environment
* host frame deallocated upon exit from host-function, but environment
of escaping variables not deallocated (maybe later GC’ed)
 closure’s data part points to environment

Allocation records for

env: invocations to h; are

code(h) held on framg stack,

and have pointer to
the closure.

Tl
—_
Q
3
dD
0P
~—
Q
®)
~

Closure for hy

Closures

b) pointer to a record (environment) in heap that holds the host function’s
escaping variables (ie exactly the variables the inner function might need)
* host function can be allocated on stack, receive its arguments as
before, and hold non-escaping variables, spills, etc in stack frame
* New “local variable™ EP points to environment
* host frame deallocated upon exit from host-function, but environment
of escaping variables not deallocated (maybe later GC’ed)
 closure’s data part points to environment

Allocation records for

-

= env: invocations to h: are

q)

% code(h) held on framg stack,

Q Closure for h and have pointer to
the closure.

Pitfall: need to prevent h from modifying n, so that repeated invocations
h:(33), h:(22) don't interfere =» no assignments to variables etc

(Class-based) Object-oriented languages

C

Ol)E)S

lasses: enriched notion of types with support for
* record type containing first-order (“fields”) and functional

(“methods”) components
« extension/inheritance/subclass mechanism
« allows addition of data (fields) and functionality (methods)
« allows modification of behavior: overriding of methods
(often, types of parameters and result cannot be modified)
« transitive (= class hierarchy), with top element OBJECT etc
« self/this: name to refer to data component in methods; can often
be considered an (implicit) additional method parameter
* initialization/creation method for class instances (“objects”)
- _limiting visibility/inheritance of fields/methods: private/public/final

O

olWeuAp

bjects: runtime structures arising from instantiating classes
* record on heap containing values for all fields

* invocation of methods: dispatch based on dynamic class, with
pointer to data field passed as argument of “self/this”

Object-oriented languages: type checking

class B: extends A {
A super; /[often implicit
int f1; // maybe with explicit explicit initialization
B b; // fields may be (pointers to) objects of class we're defining
C c; // fields may be (pointers to) object of other classes, too

intfoo (Aa,Dd){...}

Tasks:

maintain class table (maps class names to classes/types, cf context)
 maintain inheritance relationship (check absence of cycles)
« check type constraints regarding overriding method definitions
« checking of method bodies:
add entry for self to local typing context
 check adherence to private/public/final declarations

Class can refer to each other in cyclic fashion; split analysis into phases

Object representation (single inheritance)

Single inheritance: each class extends at most one other class.

(typically: classes other than OBJECT extend exactly one class)

class A extends Object {int a} - - B
a=99
class = extends A{int b; intc} B b=2
Afields “duplicated” — nota__{—=a=2 —
class C extends A{intd} pointer to an A-object! b=0
c=42
class) extends & {inte } -
a=2
Fields: objects of class C contain first the fields for o0
objects of C’s superclass, A, then fields declared in C. :12

Avoids code duplication when implementing inherited methods: loads/stores to
fields access same location, counted as offset from base of object

Static versus dynamic class of object

Typically, can assign an object of class C to a variable/field
declared to be of type A, where A is a superclass of C.

class A extends Object { int a }

class & extends A{int b; int ¢ } .

class C extends A {intd} method m (x:A) . }in class X:
body of m well- typed W. rt X: A SO can only
class [extends B {inte} access x.a. Passing a larger C object is not

harmful: additional fields ignored.

var a_object : A= new method k (...):A={... }inclass Y

k may return an object of any subclass of A -
eg body of k can be new C - but client only
Cf. subtyping knows that the returned object has a field a.

Method selection typically based on dynamic class

class A extends Object { int a;
intf () =return (a +2) }

int f () = return d //overrides A.f() } .

class C extends A {int d;

int m (x:A) {
return x.f() // code generation: jump to A.f?

}

var ¢_obj := new C();
print m(c_obj); // should invoke C.f, not A.f()

How to achieve this:

* object contains reference to its “dynamic class”
- requires class/class names to be represented at runtime
« organize method dispatch table similar to fields (next slide)

Method dispatch based on dynamic class

class A extends Object { inta; int f () = return (a+2)
class - extends A { intb; int c;
Ag() = ... // additional method }
class C extends A { int 4:
int f = return d //overridzs A.f() }
int m (x:A) {
return x.f() // code generation: jump to A.f?

}

MT

a=2

b=0

c=42

'

‘objects of dynamic class

should call A.f, C-objects

should call C.f

A
Method 1

table o| Label for
code(B_g)

% - Code for f located
at same offset, in

all subclasses of A

Now, the implementation of m follows it's A-argument’s to the
method table, then knows where to find f.

Final exam

Saturday, May 14", Friend 004,
7:30pm - 10:30pm
/

Don’t blame me.....

Final exam

Saturday, May 14", Friend 004,
7:30pm - 10:30pm
/

Don’t blame me.....

Cheat sheet: one A4 paper, double-sided.

Exam is cumulative: covers the entire semester
* lecture material incl today
* MCIML: except for last chapter and overly TIGER -
specific implementation details
« HW1-HWZY, Incl. basic ML programming

