Topic 15: Static Single Assignment

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Def-Use Chains, Use-Def Chains

Many optimizations need to find all use-sites of a definition, and/or
all def-sites of a use:

« constant propagation needs the site of the unique reaching def
* copy propagation, common subexpression elimination,...

Data structures supporting these lookups:

« def-use chain; for each definition d of variable
r, store the use sites of r that d reaches

-def chain: for each use site 1 of variable
r, store the def-sites of r that reach

N definitions, /' uses: 2*N*\\' relationships

Use-Def Chains, Def-Use Chains

Ve

B

branch 13 >rl, 6:

y

3=13+1

‘é,,mﬂ--w-———-__
6: "
Y
Y
8 M([r3] =1l

Y

Add the def-use relationships...

goto 3:

Use-Def Chains, Def-Use Chains

/ N

-

rl =5

r%é\l

27 1\

branch >r1_ 6:

6: r4\= 10 /
><

| B3=13+1

7. rl =rl + réy
~, "‘

—
V

goto 3:

And these are just the def-use relationships...

Static Single Assignment

Static Single Assignment (SSA):
e mmprovement on def-use chains
e cach register has only one definition 1n program

e for each use u of , only one definition of » reaches u

rl =5
V
rl=rl +1
r2=rl +1 r3=rl -1

How can this be achieved?

Static Single Assignment

Static Single Assignment (SSA):
e mmprovement on def-use chains
e cach register has only one definition 1n program

e for each use u of , only one definition of » reaches u

rl =5
V
M =rl+1
2=r1+1 r3=r1" -1

Rename variables consistently between defs and uses.

Why SSA?

Static Single Assignment Advantages:

e Dataflow analysis and code optimization made simpler.

— Vanables have only one definition - no ambiguity.

— Domuinator information 1s encoded in the assignments.

e Less space required to represent def-use chains. For each variable, space 1s propor-
tional to uses * defs. Distinguishing different defs makes use lists shorter and more precise:

e Eliminates unnecessary relationships:

for 1 =
for 1 =

1 to N do A[i]
1 to M do BI[1i]

less overlap.

0
1

— No reason why both loops should be forced to use same register to hold index

register.

— SSA renames second i to new register which may lead to better register alloca-
tion/optimization.

(Dynamic Single Assignment 1s also proposed in the literature.)

Conversion to SSA Code

Easy to convert basic blocks into SSA form:
e Each definition modified to define brand-new register, instead of redefining old one.

e Each use of register modified to use most recently defined version.

rl = r3 + r4
r2 =rl -1
rl = r4 + 1r2
r2 =r5 * 4

rl = rl + r2

Conversion to SSA Code

Easy to convert basic blocks into SSA form:
e Each definition modified to define brand-new register, instead of redefining old one.

e Each use of register modified to use most recently defined version.

rl = r3 + r4 M=r3+r4
r2 = rl - 1 2=r1-1
rl = r4 + r2 M’ =rd +r2
r2 = r5 * 4 2’=r5%4
rl = rl + r2 M”=r"+r2’

Control flow introduces problems.

Conversion to SSA Form

V
r2=rl +1

-

r3=r2+1 r3=r2-1

e

4=1r3*4

Conversion to SSA Form

rl =5
v
r2=rl+1
r3=r2+1 r3 yé =12 -1
777
14 =3 * 4

Use ¢ functions.

Conversion to SSA Form

rl =95
V
r2=rl +1
B3=r2+1 3 A8 =12 -1

r3” = a (;?:, r3")

r4 :/{3, *rl

r
1w

r3 = o(r3.r3): —r3" =r3if control enters from left

— 3" = r3" 1if control enters from right

Conversion to SSA Form

e ¢O-functions enable the use of 13 to be reached by exactly one definition of r3.

e Can implement ¢-functions as set of move operations on each mcoming edge.

for analysis & optimization: no implementation necessary:

@ just used as notation

left side of ®-function constitutes a definition; variables in are
ordering of argument positions corresponds to (arbitrary) order of
iIncoming control flow arcs, but left implicit (could name positions using
the labels of predecessor basic blocks...)

elimination of ®-functions/translation out-of-SSA:

insert move instructions; often coalesced during register allocation
typically, basic blocks have several ®-functions — all near the top, with
identical ordering of incomings arcs from control flow predecessors

Conversion to SSA Form

Nalve insertion:

add a @-function for each register at each node with 22 predecessors

rl =35

V

r2=rl +1

/\

1‘3=1‘5+1

rB’%(:rZ -1

T

3" =0 (r3, r3")

2'=0(2,r12)

r'=0 (r1, r1)
r4 =43 * rl

Trivial @-functions -

should clearly be avoided!

r3”

Can we do better?

Conversion to SSA Form

Path-Convergence Criterion: Insert a ¢-function for a register » at node z of the flow
graph 1f ALL of the following are true:

1. There 1s a block » containing a definition of 7.

. There 1s a block y # x containing a definition of .

(S O

. There 1s a non-empty path P,. of edges from x to z.
. There 1s a non-empty path /. of edges from y to =.

. Paths P, and ;. do not have any node 1n common other than z.

SN A

. The node = does not appear within both P,.. and P,. prior to the end. though 1t may
appear in one or the other. (g if y=2)

Assume CFG entry node contains implicit definition of each register:

e 1 = actual parameter value X y X
/ P r&< ... r< ... r< ...

e = undefined

o-functions are counted as definitions. z 1 B
=z :
Y2 lre . :

(use of r could be in
successor of z)

Conversion to SSA Form

Solve path-convergence 1teratively:

WHILE (there are nodes x, y, z satistfying conditions 1-6) &&
(z does not contain a phi-function for r) DO:
isert » = @(r, r, ...,) (one per predecessor) at node z.

e Costly to compute. (3 nested loops, for X, y, z)

e Since definitions dominate uses, use domination to simplify computation.

Conversion to SSA Form

Solve path-convergence 1teratively:

WHILE (there are nodes x, y, z satistfying conditions 1-6) &&
(z does not contain a phi-tunction for r) DO:
insert r = ¢(r, r, ...,) (one per predecessor) at node z.

e Costly to compute. (3 nested loops, for X, y, z)

e Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Remember dominance: node x dominates node
if every path from entry to w goes through x.
(In particular, every node dominates itself)

Dominance Frontier

Definitions:
e 1 strictly dominates w 1t x dominates w and x # w.

e dominance frontier of node x 1s set of all nodes w such that - dominates a predeces-
sor of w, but does not strictly dominate w.

v

1

h/' \L\

1
-~

DF(5)

Dominance Frontier

Definitions:
e 1 strictly dominates w 1t x dominates w and x # w.

e dominance frontier of node x 1s set of all nodes w such that x dominates a predeces-
sor of W, but does not strictly dominate w.

v v

1 1

; Nk 10 4 Nk 10

DF(5) = {4, 5, 10, 11}

Dominance Frontier

Dominance Frontier Criterion: Suppose 5 contains a definition of r.
Whenever node x contains a ’

definition of a register r, insert 1

a @-function for r in all nodes z T
Iterated Dominance Frontier 3 K 7
Criterion: - S o A
Apply dominance frontier condition s 8 10
repeatedly, to account for the fact ", -

that @-functions constitute I

definitions themselves.

Dominance Frontier

Dominance Frontier Criterion: Suppose 5 contains a definition of r.
Whenever node x contains a Insert @-functions f\?r rin red blocks.

definition of a register r, insert

1
a ¢-function for r in all nodes z

€ DF(x). < -..\5 =
lterated Dominance Frontier 9 e .
Criterion: =
Apply dominance frontier condition A: ?0
repeatedly, to account for the fact

that Q-functions constitute
definitions themselves.

But not here.

Dominance Frontier Computation

e Use dominator tree
e) F'|n|: dominance frontier of n

® DFj,q|nl|: successors of n in CFG that are not strictly dominated by n

e DFyc|]: nodes in dominance frontier of ¢ that are not |strictly |d0minated by ¢’s

mmediate dominator N
See errata list of MCIML

Alternative formulation: DF ., [n] = successors s of n with idom[s] <> n.

Dominance Frontier Computation

e Use dominator tree
e) F'|n|: dominance frontier of n
® DFj,q|nl|: successors of n in CFG that are not strictly dominated by n

o DF,

11mime

c|: nodes in dominance frontier of ¢ that are not [strictly |d0minated by ¢’s

tate dominator AN
See errata list of MCIML

DF {ﬂ-] = DFlpeal ['T?.-] U (UCEChHO’J‘Eﬂ-[‘?1:D Fu-p [CD

e where childrer|n| are the nodes whose 1dom 1s n.

e Work bottom up 1y dominator tree.

Leaf p satisfies DF{p | = DF [p] since children[p] = {}.

Alternative formulation: DF ., [n] = successors s of n with idom[s] <> n.

Dominator Analysis (slide 22 from “Control Flow")

e If d dominates each of the p;, then ¢ domuinates .
o If d dominates n, then d dominates each of the p,.
e Dom|n| = set of nodes that dominate node 7.
o V= set of all nodes.
e Computation: starting point: n dominated by all nodes
1. Dom|sg| = {s0}. !
2.forn € N — {sp} do Dom|n| = N
3. while (changes to any Dom/|n| occur) do
4. forne N —{sp} do
5. Dom|n| = {n} U (ﬁpepmd[ﬂ:Dom [p]).

nodes that dominate all predecessors of n

SSA Example

set of nodes that

rl =1

I

12=1

dominate n x

P Node| DOM]s] 1DOM[n]
> = 1

[PE—

branch r3 < 100

e

branch 12 < 20 6: return r2

O~ O b = W

v II|

12=rl 9: 1'_2 =13

e

I |

3=13+1 10: 3=13+2

. —
—_— O

--_""---.*:-L_,,—:_---""__-

11:

SSA Example

rl =1

I

12=1

I

3=0

|

branch r3 < 100

branch 12 < 20 6: return r2
12 =rl 9: 2 =13
V ¥
3=13+1 10: 3=1r3+2

11:

set of nodes that

dominate n x
Node DO M |n] I DOM [n]
1 1
2 1,2
3 1,2,3
4 1,2,3,4
5 1,2,3,4,5
6 1,2,3,4,6
L7 1,2,3,4,5,7
g | 1,234,578
9 1,2,3,4,5,9
10 | 1,234,509 10
11 1,2,3,4,5, 11

SSA Example

rl =1

I

12=1

I

3=0

[PE—

branch r3 < 100

e

branch 12 < 20 6: return r2
12=rl 9: 2 =13
V ¥
3=13+1 10: 3=13+2
11:

set of nodes that
dominate n x

IDOM([n]

Node
1

1
1,2
1,2,3
1,2,3,4

O 1 N ks W o

1,2,3,4,5
1,2,3,4,6
1,2,3,4,5,7
1,2,3,4,5,7,8

(SR S—
»—agw

e Every node n (n

o [Dom|n

1,2,3,4,5,9
1,2,3,4,59,10
1,2,3,4,5 11

d’

so) has exactly one immediate dominator I Dom|n

e /Dom|n! dominates n

Hence: last dominator of n on any
path from s0 to n is IDom[n]

e [Dom|n| does not dominate anv other dominator of n.

SSA Example

rl =1

I

12=1

I

3=0

[PE—

branch r3 < 100

v __________________________Z‘s._
branch 12 < 20 6: return r2
12=rl : —
| ¥
r3=13+1 10: P332
11:

set of nodes that
dominate n x

Node DO M |n] I DOM [n]

1 1 -

2 1,2 1

3 1,2,3 2

4 1,2,3 4 3 .
5 1,2,3,4,5 4
6 1,2,3,4,6 4
L7 1,2,3,4,5 7 S
8 1,234,578 /

9 12,3459 5 B
10 1,2,3,4,5,9,10 9

11 1,2.3,4,5, 11 5

e Every node n (n

o [Dom|n

e /Dom|n! dominates n

d’

so) has exactly one immediate dominator I Dom|n

Hence: last dominator of n on any
path from s0 to n is IDom[n]

e [Dom|n| does not dominate anv other dominator of n.

SSA Example

set of nodes that
dominate n x

Node

IDOM([n]

1

1
1,2
1,2,3
1,2,3,4

O 1 N ks W o

1,2,3,4,5
1,2,3,4,6
1,2,3,4,5,7
1,2,3,4,5,7,8

(SR S—
»—agw

e Every node n (n

o [Dom|n

1,2,3,4,5,9
1,2,3,4,59,10
1,2,3,4,5 11

OrL©OC Ol NO1T B~ ML -~

d’

so) has exactly one immediate dominator I Dom|n

e /Dom|n! dominates n

Hence: last dominator of n on any
path from s0 to n is IDom[n]

e [Dom|n| does not dominate anv other dominator of n.

SSA Example

DF,,..[n] = successors s of n with idom[s] <> n.

rl =1
v
2=1
R Node| | IDOM]x] DFjocaln]

1: \y— B 1 —
1 | 2 1
3 2
branch 13 < 100 5 4
— o 6 4
branch 12 < 20 6: return 12 ."l 7 5
V —e— R || 8 7
12 I rl 9: 12 ; 13 | 9 5
B3=13+1 10:| 13=13+2 | 10 J

11:

SSA Example

DF,,..[n] = successors s of n with idom[s] <> n.

rl =1
V
r2=1
3 \L(_ 0 Node IDOM |n] DFIocaI[n]
— - I - .
- 1 | 2 1
3 2
N _4 3
branch 13 < 100 5 4
v o 6 4
branch 12 < 20 6: return 12 ".I 7 %) -
- g 7 11
12 I rl 9: 12 ; 3 | 9 5 -
B3=r3+1 10:| 13=13+2 Y 9 11
— 11 5 4
11:

SSA Example

o DFj,.u[nl: successors of n in CFG that are not strictly dominated by n

e DF,,[c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF[”’] = DEOCQ.i [n] U (UCEChildren[n]DELp[c]

)
e where children|n| are the nodes whose 1dom 1s n.
U
c(n)
DF, [c]
1

I Node| [IDOM]|n|
| ! -
2 1
~~ 3 2
4 3
5 4
| 6 4
7 5
g 7
9 5
10 9
11 5

SSA Example

o DFj,.u[nl: successors of n in CFG that are not strictly dominated by n

e DF,,/c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF [71.] =D Eoca.i [n] U (UCECh,:ildv‘en[n]D Etp [C]

e where children|n| are the nodes whose idom is n. T
e Work bottom up in dominator tree. c(n)
DF,,[c]
1

I Node| | IDOM|n|
| ! -
2 1
~~ 3 2
4 3
5 4
| 6 4
7 5
g 7
9 5
10 9
11 5

SSA Example

o DFj,.ulnl: successors of n in CFG that are not strictly dominated by n

e DF,,/c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF [TI.] =D Eocal [n] U (U(’.Ech:ild'ren[n}D Etp [C

)
e where children|n| are the nodes whose idom is n. T
e Work bottom up in dominator tree. DF c(n)
Leaf p satisfies DF[p] = DF e[P] upLC]

1
2
| 3
\ Node| | IDOM]] DFcaln] A
1 — -
|) 1 5
~~ 3 2 -— —— -
: ; 6 {
5 4 /
| | 4
g : i 8 {3 11 11
. 7 11 9 \
9 5 - 10 { 11 — 11
0 : 4 11 {3 4 —> 4

SSA Example

o DFj,.ulnl: successors of n in CFG that are not strictly dominated by n

e DF,,/c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF["’] o DF}OCM[”] U (UCECh:ildr‘en[n}DELp [C])
e where children|n| are the whose 1dom 1s n. T
e Work bottom up in dominator tr DF c(n)
Leaf p satisfies DF[p | = DF,o,(uplC]
1

2

I Node IDOM n| DFIocaI_ J
1 - -

I 2 1

T
3 2 z N N
4 3
5 4 7
L6 : 8 * 11

7 5 - {}
9 5 - 10 {} 11 11
10 9 11
11 5 4 11 {} 4 4

SSA Example

o DFj,.ulnl: successors of n in CFG that are not strictly dominated by n

e DF,,/c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF["’] o DEOCﬂl[n] U (UCECII:ildr‘evz[n}DELp [C])
e where children|n| are the whose 1dom 1s n. T
e Work bottom up in dominator tr DF c(n)
Leaf p satisfies DF[p | = DF,o,(uplC]
1

2

I Node IDOM n| DFIocaI_ J
1 - -

' 2 1

T
3 2 6 3
4 3
| ; . /

0 : 8 11
. .
3 7 11 9
9 5 - 10 11
10 9 11
11 5 4 11 4

SSA Example

o DFj,.ulnl: successors of n in CFG that are not strictly dominated by n

e DF,,/c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF["’] - DEOCg.l[n] U (UCECII:ildr‘evz[n}DELp [C

)
e where children|n| are the nodes whose idom is n. T
e Work bottom up in dominator tree. DF c(n)
Leaf p satisfies DF[p] = DF e[P] upLC]

1
2 —_
| 3 _
\ Node| | IDOM]] DFcaln] p ~
1 - -
!) 1 5 4
T 3 2 _ _
) 3 6 {
5] 7 11 11
| | 4
g : i 8 O 11 11
g 7 11 9 11 11
9 5 - 10 { 11 11
10 9 1
1 5 4 11 { 4 4

SSA Example

Insert phi-functions: Dominance Frontier Criterion:
: ﬂ; : Whenever node x contains a
5. =1 definition of a register r, insert
¥ a @-function for rin all nodes z
3: 13=0 € DF()
e 1 s
4 .
N\ 2 1
3 0
branch r3 _{_i 1_ 0(_) i ' 4 O
5: branch 12 < 20 0: 1';3_‘[[1:1 12 5 4
v | 6 {}
7 12 =rl 9: 12 =13
7 7 .'| 7/ 11
8: r3=r13+1 10: 3=13+2 | 8 11
e ,. 9 11
11:
10 11
- /(

N\
™,
—
—
LN

SSA Example

Insert p/i-functions:
1:

2:

3:

Dominance Frontier Criterion:

“; : Whenever node x contains a
D=1 definition of a register r, insert
¥ a @-function for rin all nodes z
13 =0 e DF(x).
V. ————— 1
\\ ,
branch 3 _{_i 1_ 0(_) _ | 4
branch 12 < 20 6: - _Ie_tll;;l 12 5
\l/ - [— I| 6
12=rl 9: 12=13
7 7 .'| 7/
3=13+1 10 B3=13+2 | 8
11 2= o2 2) °
: r re, r .
first round 10
r3 = @(r3, r3) (4)

J./'

—
—

{
U
U
{

%
11

11
11
11

SSA Example

Rename Variables:
1. traverse dominator tree, renaming different definitions of r to 1, ro, r3...
2. rename each regular use of r to most recent definition of r

3. rename ¢-function arguments with each incoming edge’s unique definition

SSA Example

N

Rename Variables

rl =1

I

2=1

I

13=0

PSS

r2 rz””
r3 r3””
<100

branch

branch

-

e

retum

<20 | 6

=

r2” =rl

9 r2”! .

V

v

10:

[r3m —

e

| r3” = £
l 1 r2”” —

r3”” =

q) r2,,, rzm)
¢(I"3”, r3m)

Alternative construction methods for SSA

Lengauer-Tarjan: efficient computation of dominance tree
* nearlinear time
« uses depth-first spanning tree
« see MCIML, Section 19.2

John Aycock, Nigel Horspool: Simple Generation of Static Single Assignment
Form.9" Conference on Compiler Construction (CC 2000), pages 110—124, LNCS
1781, Springer 2000
« Starts from “crude” placement of @-functions: in every block, for every variable
then iteratively eliminates unnecessary ®-functions
* Forreducible CFG

M. Braun, et al.. Simple and Efficient Construction of Static Single Assignment
Form.22" Conference on Compiler Construction (CC 2013), pages 102—122, LNCS
/791, Springer 2013
« avoids computation of dominance or iterated DF
« works directly on AST (avoids CFG)

Static Single Assignment

Static Single Assignment Advantages:

e Less space required to represent def-use chains. For each varniable, space 1s propor-
tional to uses * defs.

e Eliminates unnecessary relationships:

for i = 1 to N do A[i] = 0
for i = 1 to M do B[i] =1

— No reason why both loops should be forced to use same register to hold mdex
register.

— SSA renames second i to new register which may lead to better register alloca-
tion.

e SSA form make certain optimizations quick and easy — dominance property.

— Varnables have only one definition - no ambiguity.

— Dominator information is encoded 1n the assignments.

SSA Dominance Property

Dominance property of SSA form: definitions dominate uses

th th

o If = 1s 2 argument of ¢-function m node n, then definition of » dominates :
predecessor of n.

e If r 1s used in non-¢ statement 1n node 7, then definition of = dominates n.

SSA Dead Code Elimination

Givend:t = X op y
e t 15 live at end of node d if there exists path from end of d to use of t that does not
go through definition of t.

e 1f program not 1n SSA form, need to perform liveness analysis to determine 1f t live
at end of d.

e 1f program is in SSA form:

SSA Dead Code Elimination

Givend:t = X op y
e t 15 live at end of node d if there exists path from end of d to use of t that does not
go through definition of t.
e 1f program not 1n SSA form, need to perform liveness analysis to determine 1f t live
at end of d.
e 1f program is in SSA form:
— cannot be another definition of t
— 1f there exusts use of t. then path from end of d to use exists, since definitions
dominate uses.

* every use has a unique definition
* t 1s live at end of node d 1f t 1s used at least once

SSA Dead Code Elimination

Algorithm:

WHILE (for each temporary t with no uses &&

statement defining t has no other side-etfects) DO
delete statement definition t

a<(

W
b&at
c<ctbhb
a<h*2

ifa<N

return ¢

SSA

al <0

I

a3 € ¢(a1, a2)

b1 < ®(b0, b2)

c2 < ®(c0, c1)
b2 €< a3 + 1

ifa2 <N

return ¢

. A\

DC
elim

Typo in MCIML...

al <0

I

ad < 9(at, a2)

T O(002)

c2 < P(c0, c1)
b2 < a3+1
cl € c2+Db2
a2 & b2*2
ifa2 <N

.

return ¢

SSA Simple Constant Propagation

Givend: t = c,cisconstant Given u: x = t op b
e if program not in SSA form:

— need to perform reaching definition analysis

—use of t 1n u may be replaced by c if d reaches « and no other definition of t
reaches u

e if program 1s mn SSA form:

SSA Simple Constant Propagation

Givend: t = c,cisconstant Given u: x = t op b
e if program not in SSA form:

— need to perform reaching definition analysis

—use of t 1n u may be replaced by c if d reaches « and no other definition of t
reaches u

e if program 1s mn SSA form:
— d reaches wu, since definitions dominate uses, and no other definition of t exists
on path from d to u
— d 18 only definition of t that reaches u, since 1t 1s the only definition of t.

« any use of t can be replaced by ¢
« any ¢-function of form v = ¢(cq, oo, ..., ¢,), where ¢; = ¢, can be replaced by
vV = C

eliminate branches whose outcome is constant

Similarly: copy propagation, constant folding, constant condition,
elimination of unreachable code

SSA Simple Constant Propagation

1< 1
i1€1
k1 €0

l

j2 < O(j4,11)
> k2 & O(k4, k1)
if k2 < 100

/ >

ifj2 <20 return j2

I~

i3 € i 5 € k2
k3 €k2+1 k5 €k2+2

'\/
j4 € (3, 5)
kd € (K3, kb)

SSA Simple Constant Propagation

1< 1
i1€1
k1 €0

l

j2 < O(j4,11)
> k2 & O(k4, k1)
if k2 < 100

/ >

ifj2 < 20

I~

return j2

i3 € it
k3 €k2+1

5 € k2
k5 €k2+2

'\/

j4 € (3, j5)
kd < O(k3, k5)

—_—
—

—r .
-

II

28

/% /F 4\

N
(@]

2 € o4, 1)
k2 < D(Kkd,

ifk2 <100

)

if j2 < 20

T~

3¢

k3 €k2+

J

/

return j2

5 € k2
k5 &k2+2

‘\/

4 € (3, j5)
kd € (K3, k5)

SSA Conditional Constant Propagation

N

rl =1

I

12=1

I

13 =0

V.

12’ =012,127)
13 =0@3,1377)

branch r3” < 100

branch 12° < 20 6: retum r2’
1277 =rl 9: 12777 =13
V ¥
37=13"+1 10: 3777 =13"+2

ll 1‘2:7,7 :q)(l‘zaa-} 1,2797)

1377 =037, 1377)

r2 always has value of 1
nodes 9, 10 never executed

“simple” constant propagation algo-
rithms assumes (through reaching defi-
nitions analysis) nodes 9, 10 may be ex-
ecuted.

cannot optimize use of r2 in node 5
since definitions 7 and 9 both reach 5.

SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:
e Does not assume a node can execute until evidence exists that 1t can be.

e Does not assume register 1s non-constant unless evidence exists that 1t 1s.

SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:
e Does not assume a node can execute until evidence exists that it can be.
e Does not assume register 1s non-constant unless evidence exists that 1t 1s.
Track run-time value of each register r using /attice ot values:

e /|| = L (bottom): compiler has seen no evidence that any assignment to r 1s ever
executed.

o I/|r| = 4: compiler has seen evidence that an assignment r = 4 1s executed, but
has seen no evidence that r 1s ever assigned to another value.

e I/|r| = T (top): compiler has seen evidence that r will have, at various times, two
different values, or some value that 1s not predictable at compile-time.

SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:
e Does not assume a node can execute until evidence exists that it can be.
e Does not assume register 1s non-constant unless evidence exists that 1t 1s.
Track run-time value of each register r using /attice ot values:

e /|| = L (bottom): compiler has seen no evidence that any assignment to r 1s ever
executed.

o I/|r| = 4: compiler has seen evidence that an assignment r = 4 1s executed, but
has seen no evidence that r 1s ever assigned to another value.

e I/|r| = T (top): compiler has seen evidence that r will have, at various times, two
different values, or some value that 1s not predictable at compile-time.

Also: T
e all registers start at bottom of lattice pd \

e new mnformation can only move registers up in lattice 1.0 2.0.4.

SSA Conditional Constant Propagation

Track executability of each node 1n V:
e /| N| = false: compiler has seen no evidence that node N can ever be executed.
e /| N| = true: compiler has seen evidence that node /V can be executed.
[nitially:
o /1| = L, for all registers r
o Fsyg| = true, sp1s CFG start node
o [/|N| = false, for all CFG nodes N # s

SSA Conditional Constant Propagation

Algorithm: apply following conditions until no more changes occur to £ or V' values:

1. Given: register r with no definition (formal parameter, uninitialized).
Action: V|r| =T

2. Given: executable node B with only one successor
Action: F|C] = true

3. Given: executable assignment r = x op vy, V|x| = ¢y and V]y| =
Action: V[r|] = ciopea In particular, use this rule for r = c.

4. Given: executable assignmentr = x op y,Vi|r|=TorV]y =T

Action: Vir| =T

5. Given: executable assignment r = ¢(xy, 29, ..., 2,), Vir] = ¢, Vi]z;| = c9, and
predecessors ¢ and j are executable
Action: Vir| =T

6. Given: executable assignmentr=M][...Jorr=1f(...):
Action: V[r]="T

SSA Conditional Constant Propagation

10.

Given: executable assignment r = ® (x,, ..., X,) where V [x;] =T
for some i such that the i predecessor is executable:
Action: V[r]=T

Given: executable assignment r = @ (x,, ..., X,) Where

-V [x;]=c, for some i where the i" predecessor is executable, and

-- for each j#i, either the | predecessor is not executable or V[x;] e {_L , ¢; }
Action: V[r]=c

Given: executable branch brx bopy, L1 (else L2) where V[x]=T orV[y]="T
Action: E[L1] =true and E[L2] = true

Given: executable branch brx bopy, L1 (else L2) where V[x]=c, andV[y]=c,
Action: E[L1] = true or E[L2] = true depending on c, bop ¢,

lterate until no update possible.

SSA Conditional Constant Propagation

Given V', E values, program can be optimized as follows:
o if F|B| = false, delete node B form CFG.

o if V|r| = ¢, replace each use of r by ¢, delete assignment to 7.

SSA Conditional Constant Propagation: example

rl =1

v

2=1
v N |E[N] v | VI
o B It 1 |1
R YA 2 |t 2 |1
\ 3|1 2" | L
37 =Q(3.1r3") A1t 27 |1
branch 13 < 100 5|1 277 | L
— 6t 27| L
branch 12" < 20 6: return 12’ 70 f 3 | L
e 8|t 3| L
1'2”\;1‘1 9: 1'2”’(1‘3’ 9t 371
137 =13+ 1 10:| 1377 =13 42 10|t 37 L
— C1Lf 37| L

I]. 1,2:3:7 :¢(1,277!. 1,2777)
1377 =037, 137)

SSA Conditional Constant Propagation: example

rl =1
v
2=1
V N | E[N] r |V
3=0 : .
7 - 1 rl
12 =012.127"7) - 2 12
3 2’
13’ =P@3,1377) A D
branch 13 < 100 5 27
branch 1‘2_’ ::11 20 6: return r2’ L7 3
1277 =rl 9: 12777 =13 | 9 37
W v ul 10 r-’%na
37=13"+1 10: 13777 =13"+2 [-

I]. 1,2:3:7 :q)(l,zaa!. 1,2777)
1377 =37, 13°7)

SSA Conditional Constant Propagation: example

3: 3=0
\

.

4:

137 =013,137")

branch 13 < 100

_ —

6: return 1

V |
8:| 137 =13 +1 |

11:

1.3!77'7 :q)(1_3731 1_33:-:-)

Next: eliminate ®-functions: easy in this case - map all versions of r3 to r3

SSA Conditional Constant Propagation: example

3 3=0
P
4: -
\\
branch r3 < 100
6: return 1 II'.
|
|
8: 13=13+1 |

Translating out of SSA: elimination of ®-functions

Intuitive interpretation of P-functions suggests insertion of move
instructions at the end of immediate control flow predecessors

X\ €| €. |x €.

v v v

Z < QX4 X9y ey X))
u<cz*2

Translating out of SSA: elimination of ®-functions

Intuitive interpretation of P-functions suggests insertion of move
instructions at the end of immediate control flow predecessors

X, € ...

X, € ... X, € ...

v

v v

X, € ...

v

Z < QX4 X9y ey X))
u&cz*2

Z € X,

X, € ... X, € ...

Then rely on register allocator to coalesce / eliminate moves when possible.

Translating out of SSA -- issue |

X9

<.
<.

<.

v Oy,
k& v*3

)

Translating out of SSA -- issue |

X, € ...
X, € ... < ... < ...
1 1 1 X, € ...
\/\/ c .
X, € ... : <.
Z < B, x) | |V E By,) : z & X, :
u€Ez*2 k& v*3 Zéx1 v & v &
\/\/

e Bl r———)
19 A2 AR,

ucz*?2 k& v*3

Move instructions pile up in blocks with multiple successors — they're not dead.

Translating out of SSA -- issue |

X, € ...
X, € ... <. <.
: : : X, € ...
\/\/ <« ..
X, € ... : <.
2 ¢ Dx,x) | [veap,) ; N |
U z™2 k& V™3 2EX |[2€ X ||VEy || VvE

u<cz*?2 k& v*3

Solution: place move instructions “in the CFG edge”, in a new basic block,
whenever predecessor block has several successors.

Translating out of SSA -- issue |

X, € ...
X, € ... <. <.
: : : X, € ...
NN T
X, € ... : <.
ZE QX X)) | [VED(, 1) : . :
u<z72 k& V™3 2EX ||[2€x||VEYV || VE
U< z*2 k&< v™3

“Edge-split SSA form”: each CFG edge is either its source block’s only
out-edge or its sink block’s only in-edge.
Easy to achieve during SSA construction: add empty blocks.

More motivation for edge splitting: “lost copy” problem

N X, €1
yéx X, € O(xy, 1)

X € x+1 V<X
. <Xt
P ifp

returny /I

returny

\ SSA constr. ﬂ _ Copy propy ﬂ \SSAeIim f

More motivation for edge splitting: “lost copy” problem

x € 1 X <1 % <
yéx Xy € O(xq, 1) Xy € O(xq, 1)
X € X+ 1 YK ANIE™
. <Xt <Xt

P i p i p
returny /I /I
returny return x,

\ SSA constr. ﬂ _ Copy propy ﬂ \SSAeIim f

More motivation for edge splitting: “lost copy” problem

X €< 1

y € X

X €< x+1
ifp \

returny

\ SSA constr. ﬂ

X, €1

X, € O(x4, 1)
y € X%,
< X+ 1

ifp

/I

returny

X, €1 X, €1
X, € X
Xy € ®(Xy, 1) !
AR <X+
< Xt X, €
if p if p \
return x, return x,

\ Copy prop y ﬂ

\ SSAelim f

More motivation for edge splitting: “lost copy” problem

X €< 1

y € X

X €< x+1
ifp \

returny

\ SSA constr. ﬂ

X, €1

X, € O(x4, 1)
y € X%,
< X+ 1

ifp

/I

returny

X, €1 X, €1
X, € X
Xy € ®(Xy, 1) !
AR <X+
< Xt X, €
if p if p \
return x, return x,

\ Copy prop y ﬂ

\ SSAelim f

Incorrect result: copy propagation + Q-elimination incompatible.

More motivation for edge splitting: “lost copy” problem

X €< 1

X, € 1

y € X

X € X+ 1
if p \

Xy < B(xy, x2)
y € X%
<Xt

if p

returny

.

X, € 1

X & Oy, 1)

if p

Y<K
<Xt

/L

returny

\ SSA constr. ﬂ

+ edge split

X, €1
X, € X4

if p

return x,

\ Copy prop y ﬂ

return x,

\ SSAelim f

/I.

Edge split makes copy propagation + ®@-elimination compatible.

More motivation for edge splitting: “lost copy” problem

Root cause: copy propagation (and other transformations) potentially alter
liveness ranges, so that the ranges of different SSA-versions x: of a
source-program variable x are not any longer distinct.

Xy < D(xy, 1) Xy € @(xy, 1)
| y € X, : X+l
< X+ 1 if p
i
returny return x,

\ Copy prop y ﬂ

After SSA construction, different “versions” x; of a source-program
variable x are “first-class citizens”, unrelated to each other or to x.

Translating out of SSA -- issue Il: “swap problem”

a, € ...
b, & ...
ac< ..
b & .. '
a, < P(a, =)
! b, < ©(b,, 1)
x € a x&<a, |
a<h < b,
b & X Ll ¢
ifp ifp
return a-b return

\ SSA constr. ﬂ \ Copy folding ﬂ \ SSA elim ﬂ

+ edge split

Translating out of SSA -- issue Il: “swap problem”

a, € ...
b, € ...

:

a, < ®(ay, by)
b, & P(by, ay) |*
ifp

a, € ...
b, & ...
ac< ..
b & .. '
a, < P(a, =)
! b, < ©(b,, 1)
x € a X € a,
a<h < b,
b & X Ll ¢
ifp ifp
return a-b return

N

\ SSA constr. ﬂ

+ edge split

return b,-a,

N\ _Copy folding b | \ SSAelim /

Translating out of SSA -- issue |

. “swap problem”

a< ...
b& ...

X € a
a<hb
b € X

ifp

return a-b

a, € ... a, € ...
b, € ... b, € ...
' '
a, < ®(ay, ay) a, € ®(ay, by)
b, < ®(by, 1) b, < ®(by, ay) 1
x&<a, | ifp
< b,
< X '\
ifp
return o.- return b,-a,

\ SSA constr. ﬂ

+ edge split

_ Copy folding ﬂ

a, € ...
b, & ...
a, € a,
b, € b,

ifp [

a, € b,
b, € a,

return b,-a,

\ SSA elim f

Translating out of SSA -- issue |

. “swap problem”

a; € ... a; € ... a; € ...
< b, & ... b, €& ... b, & ...
S < | | a, & a,
b, € b,
a, < ®(ay, ay) a, € ®(ay, by)
: b, < ®(by, b) b, < B(by, ay) |* :
X< a X € a, N if p ifp fe
a<h < b,
b € x <X AN pa
if p if p dy <0y
b, € a,
return a-b return return b,-a, return b,-a,
N SSAconst. M N\ _Copy folding s \ssheim A

+ edge split

Incorrect result: copy folding + ®-elimination incompatible.

p false: a and b are identified in first loop iteration,
so b,=a, holds upon loop exit, so return value is 0.

p true: correct result

Translating out of SSA -- issue Il: “swap problem”

Root cause: the moves should “execute in 9
parallel’, ie first read their RHS, then assign
to the LHS variables in parallel!

return b,-a,

®-functions in a basic block should be considered
a single @-block, of concurrent assignment, so
that the relative order of ®-functions is irrelevant:

(7) € P&

Translating out of SSA -- issue Il: “swap problem”

The ®-functions in a basic block should be é q) aq, by)
considered concurrent — as a single ®-block: (b, a,)

And replacement of ® by moves should respect this interpretation.

a; € ...
b, € ...

() € O

if p

AN

return b,-a,

Conceptual intermediate step: unary ®-blocks
at the end of the CFG predecessors / in the
incoming CFG edges.

a, € ...
b, € ...

return b,-a,

Translating out of SSA -- issue Il: “swap problem”

Then, concurrent elimination

a; € ...
of unary ®-blocks. b, € ...
a, € a,
> | b, € b,
é
(:) < o
L
ifp

/\. (a) & q)(bz)

return b,-a,

Translating out of SSA -- issue Il: “swap problem”

Then, concurrent elimination

a, € ...
of unary ¢-blocks. b, € ...
a, € a,
b, &b
a, € ... | e
b, € ..
: (a)
() € @
Tp/ but here, have cyclic dependency

T~

return b,-a,

Translating out of SSA -- issue Il: ©

swap problem”

Then, concurrent elimination

a, € ...
of unary ¢-blocks. b, € ...
a, € a,
. | b, € b,
é
(;) é CD
Tp/ but here, have cyclic dependency

/\. (a) & C|)(b2)

return b,-a, O —

Breaking dependence cycle into sequence of

move instructions requires an additional variable.

k € a,
a, € b,
b, € k

Translating out of SSA -- issue Il: “swap problem”

Resulting code has correct behavior, for p=true and p=false.

a, € ...
b, & ...
a, € a,
b, € b,

ifp k < a,

/T~ a, € b,

return b,-a, b, € k

Translating out of SSA -- issue Il: “swap problem”

In general, the variables in a (unary) ®-block can form
multiple (non-overlapping) cycles, of different length.

(b)
(a)
(d)
(1)

-~ O QO

d
C

(a)
(c)

The cycles can be broken in

succession, so the single additional The moves not involved in a cycle
variable/register k can be reused! (like e € a) are emitted first.

Translating out of SSA -- discussion

Some care is needed to avoid lost copies and the swap problem, but
basic principle — manifest the intuitive meaning of ®-functions by locally
inserting copy instructions “in the incoming edges” — works fine.

Alternative: globally identify groups of variables that can be unified
* first guess - the original variables: works fine, until aggressive
optimizations yield overlapping liveness ranges etc.

 ®-congruence classes (Sreedhar et al., Translating out of static
single assignment form. 6 Static Analysis Symposium, LNCS 1694,
Springer, 1999)

Insertion of moves, effect on liveness ranges, etc suggest exploration of
interaction between SSA and register allocation

SSA and register allocation

S. Hack et al., Register allocation for programs in SSA form. 15!
Conference on Compiler Construction (CC'06), LNCS 3923, Springer, 2006

Interference graphs of SSA programs are graphs.
Any cycle of > 3 vertices has a chord, i.e. an edge that is not part of the cycle but connects two of its vertices.

SN

—A

Key properties of chordal graphs:
1. their chromatic number is equal to the size of the largest clique
2. they can be optimally colored in quadratic time (w.r.t. number of nodes)

https://en.wikipedia.org/wiki/Cycle_(graph_theory)

SSA and register allocation

S. Hack et al., Register allocation for programs in SSA form. 15
Conference on Compiler Construction (CC'06), LNCS 3923, Springer, 2006

Also: the largest clique in the interference graph of an
SSA program P is locally manifest in P: there is at least
one instruction i, where all members of the clique are live.

Can hence traverse program and obtain required number of colors — and know
which variables to spill/coalesce in case we don't have this many registers.

Resulting approach to register allocation:

Spill Coalesce SSA- destruction

No need for iteration!

In ordinary programs, iteration was needed since spilling/coalescing was not guaranteed to reduce
the number of colors needed. For SSA, this is guaranteed, if we spill/coalesce variables live at i..

SSA and register allocation: Hack et al.’s result

Remember: interference graph of an SSA program P
* interference graph: G=(V, E) where

nodes V: program variables

edges E: (v, w) € E if there is a program point at which v and w are both live
» SSA: each use of a variable v is dominated by the (unique) definition D, of v

Lemma 1: if v and w interfere, either D, dominates D, or D,, dominates D.,.

Idea: Let i be the instruction at which v and w both live. en}r y
Thus, there are paths i === > U and i - > U, D"' ’[‘)
to some uses of v.and w. As U, is dominated by D,, there S o
is a path D, ===--=-- » . Similarly, there is a path A
from DW tol. Hence, en’[ry > DV > | sreenees > UW PR -
must contain D,, and entry === > D, ol B *U, U, U,

must contain D, From this obtain claim...

SSA and register allocation: Hack et al.’s result

Lemma 1: if v and w interfere, either D, dominates D,,, or D,, dominates D,

SSA and register allocation: Hack et al.’s result

Lemma 1: if v and w interfere, either D, dominates D,,, or D,, dominates D,

Lemma 2: if v and w interfere and D, dominates D, then v is live at D,.

Theorem 1: Let C = {c,, ... ¢} be a clique in G, ie (c,c;) € E forall i#]. Then,
there is a label in P where c,, ..., ¢, are all live.

Proof :
* by Lemma 1, the nodes c, ... ¢, are totally ordered by the dominance
relationship: ¢), ..., Cy(y fOr some permutation o of {1, ..n}

* as dominance is transitive, all ¢;; dominate C,
* by Lemma 2, all ¢, are hence all live at ¢,

SSA and register allocation: Hack et al.’s result

we color nodes by stack-based simplify-select (cf Kempe).

suppose we can simplify nodes in a perfect elimination order: when a
node is removed, its remaining neighbors form a clique

then, when we reinsert the node, we again have a clique

the size of the latter clique is bound by w(G), the size of G’ largest clique

SSA and register allocation: Hack et al.’s result

we color nodes by stack-based simplify-select (cf Kempe).

suppose we can simplify nodes in a perfect elimination order: when a
node is removed, its remaining neighbors form a clique

then, when we reinsert the node, we again have a clique

the size of the latter clique is bound by w(G), the size of G’ largest clique

Theorem 2: G admits simplification by a PEO.
(admitting simplification by PEOQ is equivalent to being chordal)

SSA and register allocation: Hack et al.’s result

* we color nodes by stack-based simplify-select (cf Kempe).

* suppose we can simplify nodes in a perfect elimination order: when a
node is removed, its remaining neighbors form a clique

 then, when we reinsert the node, we again have a clique

« the size of the latter clique is bound by w(G), the size of G’ largest clique

Theorem 2: G admits simplification by a PEO.
(admitting simplification by PEOQ is equivalent to being chordal)

Theorem 3: Chordal graphs are
max colors needed = size of the largest clique

Thus, we can color G (using a PEQO) using w(G) many colors, and P contains
an instruction where w(G) variables are live (and no instruction with more).

Thus: can traverse P, search for largest local live-set, and obtain #registers.

SSA and functional programming

SSA: « each variable has a unique site of definition; different uses of
the same source-program variable name are disambiguated
* the def-site all uses
* In straight-line code, each variable is assigned to only once

SSA and functional programming

SSA: .

each variable has a unique site of definition; different uses of
the same source-program variable name are disambiguated
the def-site all uses

in straight-line code, each variable is assigned to only once

Functional code:

each name has a unique site of binding: let x = e, in e,; different
uses of the same name are kept apart by the language definition,
or can be explicitly disambiguated by a-renaming

the binding-site determines a that contains all uses

in straight-line code, the value to which a name is bound is never
changes

SSA and functional programming

SSA: .

each variable has a unique site of definition; different uses of
the same source-program variable name are disambiguated
the def-site all uses

in straight-line code, each variable is assigned to only once

Functional code:

each name has a unique site of binding: let x = e, in e,; different
uses of the same name are kept apart by the language definition,
or can be explicitly disambiguated by a-renaming

the binding-site determines a that contains all uses

In straight-line code, the value to which a name is bound never
changes —and in a recursive function, we're in different stack
frames (but see details on stack frames in later lecture).

Andrew W. Appel: SSA /s Functional Programming. ACM SIGPLAN Notices, April 1998 .

SSA and functional programming - correspondences

Functional concept Imperative/SSA concept
variable binding in let assignment (point of definition)
a-renaming variable renaming

unique association of binding occurrences to uses|unique association of defs to uses
formal parameter of continuation/local function | @-function (point of definition)

lexical scope of bound variable dominance region
Functional concept Imperative/SSA concept
subterm relationship control flow successor relationship
arity of function f; number of ¢-functions at beginning of b;
distinctness of formal parameters of f; |distinctness of LHS-variables in the ¢-block of b;
number of call sites of function f; arity of ¢-functions in block b;
parameter lifting/dropping addition/removal of ¢-function
block floating/sinking reordering according to dominator tree structure
potential nesting structure dominator tree
nesting level maximal level index in dominator tree

* construction of SSA can be recast as transformation of a
corresponding functional program; destruction, too
* |atent structural properties of SSA often explicit in FP view
* correctness arguments for SSA analyses & transformations
transfer to/from functional view

SSA construction in functional style

1:

v &< 1
z€ 8
y <4

X< oty
y & X*z
X< x-1
ifx=0

t

wEy +y
return w

Step 1
—
convert into

functional form

one function per basic block

all functions mutually (tail-)recursive

entry point: top-level initial function call

function bodies: let-bindings for basic instructions (ANF)
liveness analysis yields formal parameter and argument lists

SSA construction in functional style

1:

v &< 1
z€ 8
y <4

X< oty
y & X*z
X< x-1
ifx=0

t

wEy +y
return w

let fun f,() = let val v =1
valz=8
valy =4
inf,(v, z, y) end
and fy(v,z,y) =letvalx=5+y

valy=x"*z
Step 1 val x=x-1
— in if x=0 then f,(y, v)
convert into else f,(v, z, y) end
functional form and f,(y, v) = letvalw =y + v

inw end
in f,() end;

one function per basic block

all functions mutually (tail-)recursive

entry point: top-level initial function call

function bodies: let-bindings for basic instructions (ANF)
liveness analysis yields formal parameter and argument lists

SSA construction in functional style

1:

v &< 1
z€ 8
y <4

X< oty
y & X*z
X< x-1
ifx=0

t

wEy +y
return w

let fun f,() = let val v =1
all functions closed val z=8

variables not globally unique, but valy = 4

uses have unique defs (scope) inf,(v, z, y) end
2\Vy &

and fy(v,z,y) =letvalx=5+y

valy=x"*z
Step 1 valx=x-1
— in if x=0 then f,(y, v)
convert into else f,(v, z, y) end
functional form and f,(y, v) = letvalw =y + v
in w end

in f,() end;

one function per basic block

all functions mutually (tail-)recursive

entry point: top-level initial function call

function bodies: let-bindings for basic instructions (ANF)
liveness analysis yields formal parameter and argument lists

SSA construction in functional style

let fun f,() = let val v =1

valz=8
valy =4
in f,(v, z, y) end .
and f,(v, z, y) =letval x =5 +y optional
valy=y*z — ——
val v =« -1 make names
in if x=0 then f4(y, v) unique

else f,(v, z, y) end
and f4(y, v) = letvalw=y +v
in w end
in f,() end;

« as functions are closed, can rename each function definition individually

SSA construction in functional style

let fun f,() = let val v =1 let fun f,() = let val v, = 1
valz=8 valz, =8
valy =4 valy, =4
in f,(v, z, y) end . in f,(v,, z4, y,) end
and f,(v, z,) = letval x =5+ optional andf,(v, 2, v,) = letval «. =5+,
valy=y*z & — val y, = x. * 7,
val x = -1 make names val = -1
in if x=0 then f5(y, v) unique in if =0 then f5(ys, V)
else f,(v, z, y) end else f,(v,, z,, v5) end
and f4(y, v) = letvalw=y +v and f5(y,, v;) =letvalw, =y, + v,
in w end in w, end
in f,() end; in f,() end;

« as functions are closed, can rename each function definition individually

SSA construction in functional style

T v, €1
2z, €8
y, €4

2: Vo, € @ (vy, vy)
Z, € O (24, 2))
Vo € @ (Vi V3)
<5+y,
Y3 € % ¥ 2,
< =1
ifx,=0

f

{
L

3| v € o(y)
V3 & O (vy)
Wy <Y, + Vs
return w,

intereret back in

imperative form

let fun f,() = let val v, =1
valz, =8
valy, =4
in f,(v4, z4, y,) end
and f,(v, ,z,, y,) =letval x. =5+,
val y, =, "z,
val . =, =1
in if =0 then f5(v, v,)
else f,(v,, z,, v5) end
and f5(y,, v;) =letvalw, =y, + v,
in w, end
in f,() end;

 each formal parameter of a function definition is the LHS of
a @-function. Arguments are the function arguments at calls

« arity of functions, distinctness of LHS variables etc all ok

* resulting code “pruned SSA”

« which functional prog avoids the un?essary ®-functions?

1 ”
unnecessary”: all call sites provide identical arguments

Removing unnecessary arguments: A-dropping

« transformation of functional programs to eliminate formal parameters

* can be performed before or after names are made unique - former
option more instructive

* (inverse operation: A-lifting)

« 2 phases: block sinking and parameter dropping

T~ remove parameters

modify nesting structure of function definitions

Removing unnecessary arguments: block sinking

Observation: if

« all callsto g are in body of (or g), and

* ¢ is closed (all free variables of body are parameters)
then the definition of g can be moved inside the definition of

let fun ...

and i(...)=let...ing(...) end Placing g near the end of f's body
and g(...) =let...in is advantageous for next step...
if...theng(...)else h(...) end

and h(...) =...(*no call to g*)

in ... end; letfun ...
and (...)=let...in
Note: g is allowed to letfun g(...) = let ...in
* make recursive calls n ;(.'_'_')tgre]g gl-..)elseh(...)end
* make calls to “host function” and h (...) = ...(*no call to g*)
* make calls to other functions, like h |in ... end:

Block sinking: example

let fun f,() = let val v =1
let fun f,() = let val v = 1

valz=38
valy =4 valz=8
in f,(v, z, v) end ~valy=4
and|f,(v, z, y) = let val x = 5 + in let|fun f,(v, z, y) =
valv=1*7 letval <=5+
val v = =1 valy=x*z
in if x=0 then f,(y, v) ~valx=r-T
else f,(v, z, v) end in if x=0
and|f,(y, v) = letval w =y +v then letffun f3(y, v) =
in w end move f; into f, !et valw =y +
in f1() end; —— " (V) g\nd end
. 0,
move f, into f, else Lv. 2. 1) end

in f5(v, z, y) end
in f,() end;

(in fact, insert f; “in the edge” ie only in the then-branch — cf edge split form)

Block sinking: example

let fun f,() = let val v =1
let fun f,() = let val v = 1

valz=38
valy =4 valz=8
in f,(v, z, v) end ~valy=4
and|f,(v, z, y) = let val x = 5 + in let|fun f,(v, z, y) =
valv=1*7 letval <=5+
val v = =1 valy=x*z
in if x=0 then f,(y, v) ~valx=r-T
else f,(v, z, v) end in if x=0
and|f,(y, v) = letval w =y +v then letffun f3(y, v) =
in w end move f; into f, !et valw =y +
in f1() end; —— " (V) g\nd end
3\Y;
move f, into f, else Lv. 2. 1) end

in f5(v, z, y) end
in f,() end;

Block sinking makes dominance structure explicit: f, = idom(f,), and f, = idom(f,)

Parameter dropping |

letfunty() = letval v=1 Parameters y and v of f:

|z=8
X; ; =4 tightest scope for v (ie the def of)
in let fun f,(v, z, y) = surrounding the call to f, is also the
letval A=5+y tightest scope surrounding the

Va: A function definition f,.
n hy a=0 B Can hence remove parameter v —
then let fih f,(y, v) = and similarly parameter v.
letvalw =y +v
in w end
in f5(y, v) end
~ elsefy(v,z,y) end letfun f,() = .. in if =0
| in,(v, 2, y) end then let fun () =
() end; letvalw=y +v
in w end
in f;() end

else ...

Parameter dropping |

let fun f,() = let val v = 1
val z =8
val y =4

in let fun (v, z, v) =
letval «=5+y
valy=x"*z
val x = -1

in if x=0

then let fun f,() = ...

in f5() end
else f5(v, z, y) end
inf,(v, z, v) end
in f,() end;

Similarly, the external call to f, from
within the body of f, would allow to
remove all three parameters from f,.

Parameter dropping lll

letfunfy() = letval v =1 Similarly, the external call to f, from

XZ: ; = Z within the body of f; would allow to

in let fun f,(v, 7, V) = remove all three parameters from f,.

letval «=5+y

Xg: _ _21 Recursive call of f,:
in if =0 * admits the removal of
then let fun f;() = ... parameters v and z, since the
in f,() end defs associated with the uses at
else f;(1, 2, v) end the call site are the defs in the

in f,(v, z, y) end formal parameter list

* does not admit the removal of
parameters v, since the def
associated with the use of y at
the call site is not the def in the
formal parameter list

in f,() end;

Parameter dropping IV

T v, €1
let fun f,() = let val v =1 2y &8
valz=8 Y <4
valy =4 |
in let fun f,(y) = 21y, €Dy,)
letval « =5+ .y
val y = . make names distinct y g ° 5
> 3 1
val ¥ = =1 &
nif =0 read as SSA program X, =0
then let fun f,() =
letvalw=y+v
in w end
in f.() end f
else f,(v) end t
in f,(v) end 3- -
: JW, &€y, v
nt;() end; 1returyn3 W, |

Superfluous ®-functions avoided.

SSA and functional programming - summary

SSA discipline shares many properties with tail-
recursive, first-order fragment of functional languages
« transfer of analysis/optimization algorithms
* suitable intermediate format for compiling functional

and imperative languages

* function calls not in tail position: calls to imperative
functions/methods/procedures
« alternative functional representation of control flow: continuations

