
1

Topic 15: Static Single Assignment

COS 320

Compiling Techniques

Princeton University 
Spring 2016

Lennart Beringer



Def-Use Chains, Use-Def Chains

Many optimizations need to find all use-sites of a definition, and/or 

all def-sites of a use:

• constant propagation needs the site of the unique reaching def

• copy propagation, common subexpression elimination,…

Data structures supporting these lookups:

• def-use chain: for each definition d of variable 

r, store the use sites of r that d reaches

• use-def chain: for each use site u of variable 

r, store the def-sites of r that reach u

N definitions, M uses: 2*N*M relationships



Use-Def Chains, Def-Use Chains

Add the def-use relationships…



Use-Def Chains, Def-Use Chains

And these are just the def-use relationships…



Static Single Assignment

How can this be achieved?



Static Single Assignment

r1’

r1’r1’

Rename variables consistently between defs and uses.



Why SSA?

Distinguishing different defs makes use lists shorter and more precise: 

less overlap.



Conversion to SSA Code



Conversion to SSA Code

r1 = r3 + r4

r2 = r1 – 1

r1’ = r4 + r2

r2’ = r5 * 4

r1’’ = r1’ + r2’



Conversion to SSA Form



Conversion to SSA Form

r3’

???



Conversion to SSA Form

r3’

r3’’

r3’’ = Φ (r3, r3’ )



Conversion to SSA Form

• for analysis & optimization: no implementation necessary:

Φ just used as notation

• left side of Φ-function constitutes a definition; variables in RHS are uses

• ordering of argument positions corresponds to (arbitrary) order of 

incoming control flow arcs, but left implicit (could name positions using 

the labels of predecessor basic blocks…)

• elimination of Φ-functions/translation out-of-SSA:

insert move instructions; often coalesced during register allocation

• typically, basic blocks have several Φ-functions – all near the top, with 

identical ordering of incomings arcs from control flow predecessors



Conversion to SSA Form

r3’

r3’’

r3’’ = Φ (r3, r3’ )

Can we do better?

Naïve insertion:

add a Φ-function for each register at each node with ≥2 predecessors

r2’ = Φ (r2, r2 )
r1’ = Φ (r1, r1)

Trivial Φ-functions –

should clearly be avoided!



Conversion to SSA Form

r…
x

r…
y

…
z

(use of r could be in 

successor of z)

r…
x

y=z
r…

(eg if y=z)



Conversion to SSA Form

(3 nested loops, for x, y, z)



Conversion to SSA Form

(3 nested loops, for x, y, z)

Remember dominance: node x dominates node 

w if every path from entry to w goes through x.

(In particular, every node dominates itself)



Dominance Frontier

5

DF(5) = ?



Dominance Frontier

x w

w

x

w

5

11

104

5

DF(5) = {4, 5, 10, 11}



Dominance Frontier

Dominance Frontier Criterion:

Whenever node x contains a 

definition of a register r, insert 

a Φ-function for r in all nodes z

є DF(x).

Iterated Dominance Frontier 

Criterion:

Apply dominance frontier condition 

repeatedly, to account for the fact 

that Φ-functions constitute 

definitions themselves.

Suppose 5 contains a definition of r.

5



Dominance Frontier

Dominance Frontier Criterion:

Whenever node x contains a 

definition of a register r, insert 

a Φ-function for r in all nodes z

є DF(x).

Iterated Dominance Frontier 

Criterion:

Apply dominance frontier condition 

repeatedly, to account for the fact 

that Φ-functions constitute 

definitions themselves.

Suppose 5 contains a definition of r.

Insert Φ-functions for r in red blocks.

But not here.



Dominance Frontier Computation

Leaf p satisfies DF[ p ] = DFlocal[ p ] since children[p] = {}.

Alternative formulation: DFlocal[n] = successors s of n with idom[s] <> n.

See errata list of MCIML



Dominance Frontier Computation

Leaf p satisfies DF[ p ] = DFlocal[ p ] since children[p] = {}.

Alternative formulation: DFlocal[n] = successors s of n with idom[s] <> n.

See errata list of MCIML



Dominator Analysis (slide 22 from “Control Flow”)

nodes that dominate all predecessors of n

starting point: n dominated by all nodes



SSA Example

set of nodes that 

dominate n



SSA Example

set of nodes that 

dominate n

1

1, 2

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 4, 5, 7

1, 2, 3, 4, 5, 7, 8

1, 2, 3, 4, 5, 9

1, 2, 3, 4, 5, 9, 10

1, 2, 3, 4, 5, 11



SSA Example

set of nodes that 

dominate n

1

1, 2

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 4, 5, 7

1, 2, 3, 4, 5, 7, 8

1, 2, 3, 4, 5, 9

1, 2, 3, 4, 5, 9, 10

1, 2, 3, 4, 5, 11



SSA Example

set of nodes that 

dominate n

1

1, 2

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 4, 5, 7

1, 2, 3, 4, 5, 7, 8

1, 2, 3, 4, 5, 9

1, 2, 3, 4, 5, 9, 10

1, 2, 3, 4, 5, 11

--

1

2

3
4

4

5

7

5

9

5



SSA Example

set of nodes that 

dominate n

1

1, 2

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 4, 5, 7

1, 2, 3, 4, 5, 7, 8

1, 2, 3, 4, 5, 9

1, 2, 3, 4, 5, 9, 10

1, 2, 3, 4, 5, 11

--

1

2

3
4

4

5

7

5

9

5

1

65

4

3

2

7

8

9

10

11

Dominator Tree



SSA Example

DFlocal[n] = successors s of n with idom[s] <> n.

DFlocal[n]



SSA Example

DFlocal[n] = successors s of n with idom[s] <> n.

DFlocal[n]

--

--

--

--

--

--

--

11

--

11

4



SSA Example

n Uc(n)
DFup[c]

DF[n] DFup[n]

1

2

3

4

5

6 {}

7

8 {}

9

10 {}

11 {}



SSA Example

n Uc(n)
DFup[c]

DF[n] DFup[n]

1

2

3

4

5

6 {} --

7

8 {} 11

9

10 {} 11

11 {} 4



SSA Example

n Uc(n)
DFup[c]

DF[n] DFup[n]

1

2

3

4

5

6 {} -- --

7

8 {} 11 11

9

10 {} 11 11

11 {} 4 4



SSA Example

n Uc(n)
DFup[c]

DF[n] DFup[n]

1

2

3

4

5

6 {} -- --

7 11

8 {} 11 11

9 11

10 {} 11 11

11 {} 4 4



SSA Example

n Uc(n)
DFup[c]

DF[n] DFup[n]

1

2

3

4

5

6 {} -- --

7 11 11

8 {} 11 11

9 11 11

10 {} 11 11

11 {} 4 4



SSA Example

n Uc(n)
DFup[c]

DF[n] DFup[n]

1 --

2 : -- :

3 : -- :

4 --

5 4

6 {} -- --

7 11 11 …

8 {} 11 11

9 11 11 …

10 {} 11 11

11 {} 4 4



SSA Example

n DF[n]

1 {}

2 {}

3 {}

4 {}

5 4

6 {}

7 11

8 11

9 11

10 11

11 4



SSA Example

n DF[n]

1 {}

2 {}

3 {}

4 {}

5 4

6 {}

7 11

8 11

9 11

10 11

11 4

r2 = Φ(r2, r2)

r3 = Φ(r3, r3)

r2 = Φ(r2, r2)

r3 = Φ(r3, r3)
(second round)

(first round)



SSA Example



SSA Example

r2’’’’ = Φ(r2’’, r2’’’)

r3’’’’ = Φ(r3’’, r3’’’)

r2' = Φ(r2, r2’’’’)

r3’ = Φ(r3, r3’’’’)

r3’

r3’ r3’+ 1 + 2

r2’r2’ < 20

< 100r3’

r2’’ r2’’’

r3’’ r3’’’



Alternative construction methods for SSA

Lengauer-Tarjan: efficient computation of dominance tree

• near linear time

• uses depth-first spanning tree

• see MCIML, Section 19.2

M. Braun, et al.: Simple and Efficient Construction of Static Single Assignment 

Form.22nd Conference on Compiler Construction (CC 2013), pages 102—122, LNCS 

7791, Springer 2013

• avoids computation of dominance or iterated DF

• works directly on AST (avoids CFG)

John Aycock, Nigel Horspool: Simple Generation of Static Single Assignment 

Form.9nd Conference on Compiler Construction (CC 2000), pages 110—124, LNCS 

1781, Springer 2000

• Starts from “crude” placement of Φ-functions: in every block, for every variable

• then iteratively eliminates unnecessary Φ-functions

• For reducible CFG



Static Single Assignment



SSA Dominance Property



SSA Dead Code Elimination



SSA Dead Code Elimination



SSA Dead Code Elimination

a1  0

a3 Φ(a1, a2)

b1  Φ(b0, b2)

c2  Φ(c0, c1)

b2  a3 + 1

c1  c2 + b2

a2  b2 * 2

if a2 < N

return c1

a1  0

a3 Φ(a1, a2)

b1  Φ(b0, b2)

c2  Φ(c0, c1)

b2  a3 + 1

c1  c2 + b2

a2  b2 * 2

if a2 < N

return c1

a  0

b  a + 1

c  c + b

a  b * 2

if a < N

return c
Typo in MCIML…

SSA DC 

elim



SSA Simple Constant Propagation



SSA Simple Constant Propagation

Similarly: copy propagation, constant folding, constant condition, 

elimination of unreachable code

eliminate branches whose outcome is constant



SSA Simple Constant Propagation

i1  1

j1  1

k1  0

j2  Φ(j4, j1)

k2  Φ(k4, k1)

if k2 < 100

if j2 < 20 return j2

j3  i1

k3 k2+1

j5  k2

k5 k2+2

j4  Φ(j3, j5)

k4  Φ(k3, k5)



SSA Simple Constant Propagation

i1  1

j1  1

k1  0

j2  Φ(j4, j1)

k2  Φ(k4, k1)

if k2 < 100

if j2 < 20 return j2

j3  i1

k3 k2+1

j5  k2

k5 k2+2

j4  Φ(j3, j5)

k4  Φ(k3, k5)

i1  1

j1  1

k1  0

j2  Φ(j4,     )

k2  Φ(k4,      )

if k2 < 100

if j2 < 20 return j2

j3  i1

k3 k2+1

j5  k2

k5 k2+2

j4  Φ(j3, j5)

k4  Φ(k3, k5)

SCP 

1

1

0



SSA Conditional Constant Propagation

Φ

Φ

Φ

Φ



SSA Conditional Constant Propagation



. . . -1 . .  2 . . 4 . . .

SSA Conditional Constant Propagation

┴

┬



. . . -1 . .  2 . . 4 . . .

SSA Conditional Constant Propagation

┴

┬



SSA Conditional Constant Propagation



SSA Conditional Constant Propagation

Given: executable assignment r = M […] or r = f (…):

Action: V[ r ] = ┬
6. 

In particular, use this rule for r = c.



SSA Conditional Constant Propagation

Given: executable assignment r = Φ (x1, …, xn) where 

-- V [ xi ] = ci for some i where the ith predecessor is executable, and

-- for each j≠i, either the jth predecessor is not executable or V[ xj ] є {      , ci }:

Action: V[ r ] = ci

8. 

Given: executable branch  br x bop y, L1 (else L2) where V [ x ] =      or V [ y ] = 

Action: E[ L1 ] = true and E[ L2 ] = true

9. ┬┬

┴

Given: executable branch  br x bop y, L1 (else L2) where V [ x ] = c1 and V [ y ] = c2

Action: E[ L1 ] = true or E[ L2 ] = true depending on c1 bop c2

10. 

Given: executable assignment r = Φ (x1, …, xn) where V [ xi ] =   

for some i such that the ith predecessor is executable:

Action: V[ r ] = ┬

7. ┬

Iterate until no update possible.



SSA Conditional Constant Propagation



SSA Conditional Constant Propagation: example

Φ

Φ

Φ

Φ



SSA Conditional Constant Propagation: example

Φ

Φ

Φ

Φ



Next: eliminate Φ-functions: easy in this case - map all versions of r3 to r3

SSA Conditional Constant Propagation: example

Φ

Φ



SSA Conditional Constant Propagation: example



Translating out of SSA: elimination of Φ-functions

Intuitive interpretation of Φ-functions suggests insertion of move 

instructions at the end of immediate control flow predecessors 

z  Φ(x1, x2, …, xn)

u  z * 2

. . .

:      

x1 …

:

:      

x2 …

:

:      

xn …

:



Translating out of SSA: elimination of Φ-functions

Intuitive interpretation of Φ-functions suggests insertion of move 

instructions at the end of immediate control flow predecessors 

z  Φ(x1, x2, …, xn)

u  z * 2

. . .

:      

x1 …

:

:      

x2 …

:

:      

xn …

:

z  Φ(x1, x2, …, xn)

u  z * 2

. . .

:   

z  x1

x1 …

:

:   

z  x2

x2 …

:

: 

z  xn

xn …

:

Then rely on register allocator to coalesce / eliminate moves when possible.



Translating out of SSA -- issue I

v Φ(y1, y2)

k  v * 3

. . .

z  Φ(x1, x2)

u  z * 2

. . .

x1 …

:

x2 …

y1 …

:

y2 …

:



Translating out of SSA -- issue I

Move instructions pile up in blocks with multiple successors – they’re not dead.

v Φ(y1, y2)

k  v * 3

. . .

z  Φ(x1, x2)

u  z * 2

. . .

x1 …

:

x2 …

y1 …

:

y2 …

:

v Φ(y1, y2)

k  v * 3

. . .

z  Φ(x1, x2)

u  z * 2

. . .

x1 …

:

z  x1

x2 …

y1 …

:

z  x2

v  y1

y2 …

:

v  y2



Translating out of SSA -- issue I

Solution: place move instructions “in the CFG edge”, in a new basic block,

whenever predecessor block has several successors.

v Φ(y1, y2)

k  v * 3

. . .

z  Φ(x1, x2)

u  z * 2

. . .

x1 …

:

x2 …

y1 …

:

y2 …

:

x1 …

:

z  x1

x2 …

y1 …

: y2 …

:

v  y2

z  Φ(x1, x2)

u  z * 2

. . .

v Φ(y1, y2)

k  v * 3

. . .

v  y1z  x2



Translating out of SSA -- issue I

v Φ(y1, y2)

k  v * 3

. . .

z  Φ(x1, x2)

u  z * 2

. . .

x1 …

:

x2 …

y1 …

:

y2 …

:

x1 …

:

z  x1

x2 …

y1 …

: y2 …

:

v  y2

z  Φ(x1, x2)

u  z * 2

. . .

v Φ(y1, y2)

k  v * 3

. . .

v  y1z  x2

“Edge-split SSA form”: each CFG edge is either its source block’s only 

out-edge or its sink block’s only in-edge.
Easy to achieve during SSA construction: add empty blocks. 



x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return y

x  1

y  x

x x + 1

if p

return y

SSA elimSSA constr. Copy prop y

More motivation for edge splitting: “lost copy” problem



x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return y

x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return x2

x  1

y  x

x x + 1

if p

return y

SSA elimSSA constr. Copy prop y

More motivation for edge splitting: “lost copy” problem



x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return y

x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return x2

x1  1

x2  x1

x3  x2 + 1

x2  x3

if p

return x2

x  1

y  x

x x + 1

if p

return y

SSA elimSSA constr. Copy prop y

More motivation for edge splitting: “lost copy” problem



x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return y

x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return x2

x1  1

x2  x1

x3  x2 + 1

x2  x3

if p

return x2

x  1

y  x

x x + 1

if p

return y

SSA elimSSA constr. Copy prop y

Incorrect result: copy propagation + Φ-elimination incompatible.

More motivation for edge splitting: “lost copy” problem



x  1

y  x

x x + 1

if p

return y

SSA elimCopy prop y

x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return y

x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return x2

SSA constr.

+ edge split

x1  1

x2  x1

x3  x2 + 1

if p

return x2

x2  x3

Edge split makes copy propagation + Φ-elimination compatible.

More motivation for edge splitting: “lost copy” problem



More motivation for edge splitting: “lost copy” problem

Copy prop y

x1  1

x2  Φ(x1, x3)

y  x2

x3  x2 + 1

if p

return y

x1  1

x2  Φ(x1, x3)

x3  x2 + 1

if p

return x2

After SSA construction, different “versions” xi of a source-program 

variable x are “first-class citizens”, unrelated to each other or to x.

Root cause: copy propagation (and other transformations) potentially alter 

liveness ranges, so that the ranges of different SSA-versions xi of a 

source-program variable x are not any longer distinct.



Translating out of SSA -- issue II: “swap problem”

Copy folding

a…

b …

x a

a b

b x

if p

return a-b

a1 …

b1 …

a2  Φ(a1, a3)

b2  Φ(b1, b3)

x  a2

a3  b2

b3  x

if p

return a3-b3

SSA constr.

+ edge split

SSA elim



Translating out of SSA -- issue II: “swap problem”

Copy folding

a…

b …

x a

a b

b x

if p

return a-b

a1 …

b1 …

a2  Φ(a1, a3)

b2  Φ(b1, b3)

x  a2

a3  b2

b3  x

if p

return a3-b3

SSA constr.

+ edge split

a1 …

b1 …

a2  Φ(a1, b2)

b2  Φ(b1, a2)

if p

return b2-a2

SSA elim



Translating out of SSA -- issue II: “swap problem”

Copy folding

a…

b …

x a

a b

b x

if p

return a-b

a1 …

b1 …

a2  Φ(a1, a3)

b2  Φ(b1, b3)

x  a2

a3  b2

b3  x

if p

return a3-b3

SSA constr.

+ edge split

a1 …

b1 …

a2  Φ(a1, b2)

b2  Φ(b1, a2)

if p

return b2-a2

SSA elim

a1 …

b1 …

a2  a1

b2  b1

if p

a2  b2

b2  a2

return b2-a2



Translating out of SSA -- issue II: “swap problem”

Copy folding

Incorrect result: copy folding + Φ-elimination incompatible.

a…

b …

x a

a b

b x

if p

return a-b

a1 …

b1 …

a2  Φ(a1, a3)

b2  Φ(b1, b3)

x  a2

a3  b2

b3  x

if p

return a3-b3

SSA constr.

+ edge split

a1 …

b1 …

a2  Φ(a1, b2)

b2  Φ(b1, a2)

if p

return b2-a2

SSA elim

p true: correct result p false: a and b are identified in first loop iteration, 

so b2=a2 holds upon loop exit, so return value is 0.

a1 …

b1 …

a2  a1

b2  b1

if p

a2  b2

b2  a2

return b2-a2



Translating out of SSA -- issue II: “swap problem”

Root cause: the moves should “execute in 

parallel”, ie first read their RHS, then assign 

to the LHS variables in parallel!

Φ-functions in a basic block should be considered 

a single Φ-block, of concurrent assignment, so 

that the relative order of Φ-functions is irrelevant: 

(  )  Φa2                                    (a1, b2)

b2 (b1, a2)

a1 …

b1 …

a2  Φ(a1, b2)

b2  Φ(b1, a2)

if p

return b2-a2



Translating out of SSA -- issue II: “swap problem”

The Φ-functions in a basic block should be 

considered concurrent – as a single Φ-block: (  )  Φa2                                    (a1, b2)

b2 (b1, a2)

And replacement of Φ by moves should respect this interpretation.

if p

return b2-a2

a1 …

b1 …

a1 …

b1 …

a2  Φ(a1, b2)

b2  Φ(         b1, a2)

if p

return b2-a2

Conceptual intermediate step: unary Φ-blocks 

at the end of the CFG predecessors / in the 

incoming CFG edges.



Translating out of SSA -- issue II: “swap problem”

if p

return b2-a2

a1 …

b1 …

a1 …

b1 …

a2  a1

b2  b1

Then, concurrent elimination 

of unary Φ-blocks.

no problem here



Translating out of SSA -- issue II: “swap problem”

if p

return b2-a2

a1 …

b1 …

a1 …

b1 …

a2  a1

b2  b1

Then, concurrent elimination 

of unary Φ-blocks.

no problem here

but here, have cyclic dependency

horizontal : left-to-right 



Translating out of SSA -- issue II: “swap problem”

if p

return b2-a2

a1 …

b1 …

a1 …

b1 …

a2  a1

b2  b1

Then, concurrent elimination 

of unary Φ-blocks.

no problem here

but here, have cyclic dependency

Breaking dependence cycle into sequence of 

move instructions requires an additional variable.

k  a2

a2  b2

b2  k



Translating out of SSA -- issue II: “swap problem”

if p

return b2-a2

a1 …

b1 …

a2  a1

b2  b1

Resulting code has correct behavior, for p=true and p=false.

k  a2

a2  b2

b2  k

as usual, register alloc

can clean this up



Translating out of SSA -- issue II: “swap problem”

In general, the variables in a (unary) Φ-block can form 

multiple (non-overlapping) cycles, of different length.

The cycles can be broken in 

succession, so the single additional 

variable/register k can be reused!

a

b

c

d

e

f

(  )  Φ
(b)

(a)

(d)

(f)

(a)

(c)

New (implicit) sanity condition of SSA:

LHS variables should be distinct!

Variables may occur repeatedly 

in RHS – but only participate in 

one cycle. 

The moves not involved in a cycle 

(like e  a) are emitted first.



Translating out of SSA -- discussion

Some care is needed to avoid lost copies and the swap problem, but 

basic principle – manifest the intuitive meaning of Φ-functions by locally 

inserting copy instructions “in the incoming edges” – works fine.

Alternative: globally identify groups of variables that can be unified

• first guess - the original variables: works fine, until aggressive 

optimizations yield overlapping liveness ranges etc.

• Φ-congruence classes (Sreedhar et al., Translating out of static 

single assignment form. 6th Static Analysis Symposium, LNCS 1694, 

Springer, 1999)

Insertion of moves, effect on liveness ranges, etc suggest exploration of 

interaction between SSA and register allocation



SSA and register allocation

S. Hack et al., Register allocation for programs in SSA form. 15th

Conference on Compiler Construction (CC’06), LNCS 3923, Springer, 2006 

Interference graphs of SSA programs are chordal graphs. 

Key properties of chordal graphs:

1. their chromatic number is equal to the size of the largest clique

2. they can be optimally colored in quadratic time (w.r.t. number of nodes)

Any cycle of > 3 vertices has a chord, i.e. an edge that is not part of the cycle but connects two of its vertices.

https://en.wikipedia.org/wiki/Cycle_(graph_theory)


SSA and register allocation

S. Hack et al., Register allocation for programs in SSA form. 15th

Conference on Compiler Construction (CC’06), LNCS 3923, Springer, 2006 

Spill Color Coalesce SSA- destruction

No need for iteration!

Resulting approach to register allocation:

Also: the largest clique in the interference graph of an 

SSA program P is locally manifest in P: there is at least 

one instruction iP where all members of the clique are live.

Can hence traverse program and obtain required number of colors – and know 

which variables to spill/coalesce in case we don’t have this many registers.

In ordinary programs, iteration was needed since spilling/coalescing was not guaranteed to reduce 

the number of colors needed. For SSA, this is guaranteed, if we spill/coalesce variables live at iP.

Don’t merge nodes in G, but share reg for variables in a Φ-node.



SSA and register allocation: Hack et al.’s result

Remember: interference graph of an SSA program P

• interference graph: G=(V, E) where

nodes V: program variables

edges E: (v, w) є E if there is a program point at which v and w are both live

• SSA: each use of a variable v is dominated by the (unique) definition Dv of v

Lemma 1: if v and w interfere, either Dv dominates Dw, or Dw dominates Dv. 

Idea: Let i be the instruction at which v and w both live. 

Thus, there are paths i Uv and i Uw

to some uses of v and w. As Uv is dominated by Dv, there 

is a path Dv i. Similarly, there is a path 

from Dw to i. Hence, entry Dv i Uw

must contain Dw, and entry Dw i Uv

must contain Dv, . From this obtain claim…

Dv Dw

i

Uv Uw

entry



SSA and register allocation: Hack et al.’s result

Lemma 2: if v and w interfere and Dv dominates Dw, then v is live at Dv. 

Lemma 1: if v and w interfere, either Dv dominates Dw, or Dw dominates Dv. 



SSA and register allocation: Hack et al.’s result

Lemma 2: if v and w interfere and Dv dominates Dw, then v is live at Dv. 

Theorem 1: Let C = {c1, … cn} be a clique in G, ie (ci,cj) є E forall i≠j. Then, 

there is a label in P where c1, …, cn are all live.

Proof : 

• by Lemma 1, the nodes c1, … cn are totally ordered by the dominance 

relationship: cσ(1), …, cσ(n) for some permutation σ of {1, ..n}

• as dominance is transitive, all cσ(i) dominate cσ(n)

• by Lemma 2, all cσ(i) are hence all live at cσ(n).

Lemma 1: if v and w interfere, either Dv dominates Dw, or Dw dominates Dv. 



SSA and register allocation: Hack et al.’s result

• we color nodes by stack-based simplify-select (cf Kempe). 

• suppose we can simplify nodes in a perfect elimination order: when a 

node is removed, its remaining neighbors form a clique

• then, when we reinsert the node, we again have a clique

• the size of the latter clique is bound by ω(G), the size of G’ largest clique 



SSA and register allocation: Hack et al.’s result

• we color nodes by stack-based simplify-select (cf Kempe). 

• suppose we can simplify nodes in a perfect elimination order: when a 

node is removed, its remaining neighbors form a clique

• then, when we reinsert the node, we again have a clique

• the size of the latter clique is bound by ω(G), the size of G’ largest clique 

Theorem 2: G admits simplification by a PEO.

(admitting simplification by PEO is equivalent to being chordal)



SSA and register allocation: Hack et al.’s result

• we color nodes by stack-based simplify-select (cf Kempe). 

• suppose we can simplify nodes in a perfect elimination order: when a 

node is removed, its remaining neighbors form a clique

• then, when we reinsert the node, we again have a clique

• the size of the latter clique is bound by ω(G), the size of G’ largest clique 

Theorem 2: G admits simplification by a PEO.

Theorem 3: Chordal graphs are perfect: 

max colors needed = size of the largest clique

(admitting simplification by PEO is equivalent to being chordal)

Thus, we can color G (using a PEO) using ω(G) many colors, and P contains

an instruction where ω(G) variables are live (and no instruction with more).  

Thus: can traverse P, search for largest local live-set, and obtain #registers. 



SSA and functional programming

SSA: • each variable has a unique site of definition; different uses of 

the same source-program variable name are disambiguated

• the def-site dominates all uses 

• in straight-line code, each variable is assigned to only once



SSA and functional programming

SSA: • each variable has a unique site of definition; different uses of 

the same source-program variable name are disambiguated

• the def-site dominates all uses 

• in straight-line code, each variable is assigned to only once

Functional code: 

• each name has a unique site of binding: let x = e1 in e2; different 

uses of the same name are kept apart by the language definition, 

or can be explicitly disambiguated by α-renaming

• the binding-site determines a scope that contains all uses

• in straight-line code, the value to which a name is bound is never 

changes



SSA and functional programming

SSA: • each variable has a unique site of definition; different uses of 

the same source-program variable name are disambiguated

• the def-site dominates all uses 

• in straight-line code, each variable is assigned to only once

Functional code: 

• each name has a unique site of binding: let x = e1 in e2; different 

uses of the same name are kept apart by the language definition, 

or can be explicitly disambiguated by α-renaming

• the binding-site determines a scope that contains all uses

• in straight-line code, the value to which a name is bound never 

changes – and in a recursive function, we’re in different stack 

frames (but see details on stack frames in later lecture).

Andrew W. Appel: SSA is Functional Programming. ACM SIGPLAN Notices, April 1998 .



SSA and functional programming - correspondences

• construction of SSA can be recast as transformation of a 

corresponding functional program; destruction, too

• latent structural properties of SSA often explicit in FP view

• correctness arguments for SSA analyses & transformations 

transfer to/from functional view



SSA construction in functional style

v  1

z  8

y  4

1:

x 5 + y

y  x * z

x  x – 1

if x = 0

2:

w y  +v

return w

3: • one function per basic block 

• all functions mutually (tail-)recursive

• entry point: top-level initial function call

• function bodies: let-bindings for basic instructions (ANF)

• liveness analysis yields formal parameter and argument lists

t
f

Step 1

convert into 

functional form



SSA construction in functional style

v  1

z  8

y  4

1:

x 5 + y

y  x * z

x  x – 1

if x = 0

2:

w y  +v

return w

3:

let fun f1() = let val v = 1

val z = 8

val y = 4

in f2(v, z, y) end

and f2(v ,z, y) = let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0 then f3(y, v) 

else f2(v, z, y) end

and f3(y, v) = let val w = y + v 

in w end

in f1() end;

• one function per basic block 

• all functions mutually (tail-)recursive

• entry point: top-level initial function call

• function bodies: let-bindings for basic instructions (ANF)

• liveness analysis yields formal parameter and argument lists

t
f

Step 1

convert into 

functional form



SSA construction in functional style

v  1

z  8

y  4

1:

x 5 + y

y  x * z

x  x – 1

if x = 0

2:

w y  +v

return w

3:

let fun f1() = let val v = 1

val z = 8

val y = 4

in f2(v, z, y) end

and f2(v ,z, y) = let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0 then f3(y, v) 

else f2(v, z, y) end

and f3(y, v) = let val w = y + v 

in w end

in f1() end;

• one function per basic block 

• all functions mutually (tail-)recursive

• entry point: top-level initial function call

• function bodies: let-bindings for basic instructions (ANF)

• liveness analysis yields formal parameter and argument lists

t
f

Step 1

• all functions closed

• variables not globally unique, but 

uses have unique defs (scope)

convert into 

functional form



SSA construction in functional style

• as functions are closed, can rename each function definition individually

let fun f1() = let val v = 1

val z = 8

val y = 4

in f2(v, z, y) end

and f2(v, z, y) = let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0 then f3(y, v) 

else f2(v, z, y) end

and f3(y, v) = let val w = y + v

in w end

in f1() end;

optional

make names

unique



SSA construction in functional style

let fun f1() = let val v1 = 1

val z1 = 8

val y1 = 4

in f2(v1, z1, y1) end

and f2(v2 ,z2, y2) = let val x1 = 5 + y2

val y3 = x1 * z2

val x2 = x1 – 1

in if x2=0 then f3(y3, v2) 

else f2(v2, z2, y3) end

and f3(y4, v3) = let val w1 = y4 + v3

in w1 end

in f1() end;

• as functions are closed, can rename each function definition individually

let fun f1() = let val v = 1

val z = 8

val y = 4

in f2(v, z, y) end

and f2(v, z, y) = let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0 then f3(y, v) 

else f2(v, z, y) end

and f3(y, v) = let val w = y + v

in w end

in f1() end;

optional

make names

unique



SSA construction in functional style

• each formal parameter of a function definition is the LHS of

a Φ-function. Arguments are the function arguments at calls

• arity of functions, distinctness of LHS variables etc all ok 

• resulting code “pruned SSA”

• which functional prog avoids the unnecessary Φ-functions?

v1  1

z1  8

y1  4

1:

v2  Φ (v1, v2)

z2  Φ (z1, z2)

y2  Φ (y1, y3)

x1  5 + y2

y3  x1 * z2

x2  x1 – 1

if x2 = 0

2:

y4  Φ (y3)

v3  Φ (v2)

w1  y4 + v3

return w1

3:

t
f

interpret back in

imperative form

“unnecessary”: all call sites provide identical arguments

let fun f1() = let val v1 = 1

val z1 = 8

val y1 = 4

in f2(v1, z1, y1) end

and f2(v2 ,z2, y2) = let val x1 = 5 + y2

val y3 = x1 * z2

val x2 = x1 – 1

in if x2=0 then f3(y3, v2) 

else f2(v2, z2, y3) end

and f3(y4, v3) = let val w1 = y4 + v3

in w1 end

in f1() end;



Removing unnecessary arguments: λ-dropping

• transformation of functional programs to eliminate formal parameters

• can be performed before or after names are made unique - former 

option more instructive

• (inverse operation: λ-lifting)

• 2 phases: block sinking and parameter dropping

modify nesting structure of function definitions

remove parameters



Removing unnecessary arguments: block sinking

Observation: if

• all calls to g are in body of f (or g), and

• g is closed (all free variables of body are parameters) 

then the definition of g can be moved inside the definition of f

let fun …

and f(…) = let … in g(…) end

and g(…) = let …in 

if … then g(…) else h (…) end

and h (…) = …(*no call to g*)

in … end; let fun …

and f(…) = let … in

let fun g(…) = let …in 

if … then g(…) else h (…) end

in g(…) end

and h (…) = …(*no call to g*)

in … end;

Note: g is allowed to

• make recursive calls

• make calls to “host function” f

• make calls to other functions, like h

Placing g near the end of f’s body 

is advantageous for next step…



Block sinking: example

let fun f1() = let val v = 1

val z = 8

val y = 4

in f2(v, z, y) end

and f2(v, z, y) = let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0 then f3(y, v) 

else f2(v, z, y) end

and f3(y, v) = let val w = y + v

in w end

in f1() end;

move f3 into f2

move f2 into f1

let fun f1() = let val v = 1

val z = 8

val y = 4

in let fun f2(v, z, y) =

let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0

then let fun f3(y, v) = 

let val w = y + v

in w end

in f3(y, v) end

else f2(v, z, y) end

in f2(v, z, y) end

in f1() end;

(in fact, insert f3 “in the edge” ie only in the then-branch – cf edge split form)



Block sinking: example

let fun f1() = let val v = 1

val z = 8

val y = 4

in f2(v, z, y) end

and f2(v, z, y) = let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0 then f3(y, v) 

else f2(v, z, y) end

and f3(y, v) = let val w = y + v

in w end

in f1() end;

move f3 into f2

move f2 into f1

let fun f1() = let val v = 1

val z = 8

val y = 4

in let fun f2(v, z, y) =

let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0

then let fun f3(y, v) = 

let val w = y + v

in w end

in f3(y, v) end

else f2(v, z, y) end

in f2(v, z, y) end

in f1() end;

Block sinking makes dominance structure explicit: f2 = idom(f3), and f1 = idom(f2) 



Parameter dropping I

let fun f1() = let val v = 1

val z = 8

val y = 4

in let fun f2(v, z, y) =

let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0

then let fun f3(y, v) = 

let val w = y + v

in w end

in f3(y, v) end

else f2(v, z, y) end

in f2(v, z, y) end

in f1() end;

Parameters y and v of f3:

tightest scope for y (ie the def of)

surrounding the call to f3 is also the 

tightest scope surrounding the 

function definition f3.

Can hence remove parameter y –

and similarly parameter v.

let fun f1() = ... in if x=0

then let fun f3() = 

let val w = y + v

in w end

in f3() end

else …



Parameter dropping II

let fun f1() = let val v = 1

val z = 8

val y = 4

in let fun f2(v, z, y) =

let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0

then let fun f3() = …

in f3() end

else f2(v, z, y) end

in f2(v, z, y) end

in f1() end;

Similarly, the external call to f2 from 

within the body of f1 would allow to 

remove all three parameters from f2.



Parameter dropping III

let fun f1() = let val v = 1

val z = 8

val y = 4

in let fun f2(v, z, y) =

let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0

then let fun f3() = …

in f3() end

else f2(v, z, y) end

in f2(v, z, y) end

in f1() end;

Similarly, the external call to f2 from 

within the body of f1 would allow to 

remove all three parameters from f2.

Recursive call of f2:

• admits the removal of 

parameters v and z, since the 

defs associated with the uses at 

the call site are the defs in the 

formal parameter list

• does not admit the removal of 

parameters y, since the def

associated with the use of y at 

the call site is not the def in the 

formal parameter list



Parameter dropping IV

let fun f1() = let val v = 1

val z = 8

val y = 4

in let fun f2(y) =

let val x = 5 + y

val y = x * z

val x = x – 1

in if x=0

then let fun f3() = 

let val w = y + v

in w end

in f3() end

else f2(y) end

in f2(y) end

in f1() end;

v1  1

z1  8

y1  4

1:

y2  Φ (y1, y3)

x1  5 + y2

y3  x1 * z1

x2  x1 – 1

if x2 = 0

2:

w1  y3 + v1

return w1

3:

t
f

make names distinct

read as SSA program

Superfluous Φ-functions avoided.



SSA and functional programming - summary

SSA discipline shares many properties with tail-

recursive, first-order fragment of functional languages

• transfer of analysis/optimization algorithms 

• suitable intermediate format for compiling functional 

and imperative languages 

• function calls not in tail position: calls to imperative 

functions/methods/procedures

• alternative functional representation of control flow: continuations


