
1

Topic 14: Scheduling

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

The Back End

Well, let’s see…

Motivating example

Starting point

Motivating example

Starting point

Multiplication

takes 2 cycles

Motivating example

Instructions take multiple cycles:

fill empty slots with independent instructions!

Motivating example

Instructions take multiple cycles:

fill empty slots with independent instructions!
what exactly do we mean by “independent”?

When our processor can execute 2 instructions per cycle

Motivating example

When our processor can execute 2 instructions per cycle:

issue pairs of independent instructions whenever possible

Motivating example

When our processor can execute 2 instructions per cycle:

issue pairs of independent instructions whenever possible

same notion of “independent”?

empty slot reappears – tough luck…

Motivating example

Instruction Level Parallelism

The concurrently executed instructions stem from a single program.

• Processors can execute several instructions per cycle (Ithanium: up to 6)

• ILP/VLIW: dependencies identified by compiler  instruction bundles

• Super-Scalar: dependencies identified by processor (instruction windows)

Advantages / Disadvantages?

Instruction Level Parallelism

The concurrently executed instructions stem from a single program.

• Processors can execute several instructions per cycle (Ithanium: up to 6)

• ILP/VLIW: dependencies identified by compiler  instruction bundles

• Super-Scalar: dependencies identified by processor (instruction windows)

Advantages / Disadvantages?

Possible synthesis:

• have compiler take care of register-carried dependencies

• let processor take care of memory-carried dependencies: exploit

dynamic resolution of memory aliasing

• use register renaming, register bypassing, out-of-order execution,

speculation (branch prediction) to keep all execution units busy

Scheduling constraints

• Data dependencies

• ordering between instructions that arises from the flow of data

• Control dependencies

• ordering between instructions that arises from flow of control

• Resource constraints

• processors have limited number of functional units

• not all functional units can execute all instructions (Floating point unit

versus Integer-ALU, …)

• only limited number of instructions can be issued in one cycle

• only a limited number of register read/writes can be done concurrently

Data Dependences

Read After Write

r1  . . .

d

. .  . . r1 . .

u

“True” dependence: arises

from actual flow of values

Data Dependences

Read After Write

r1  . . .

d

. .  . . r1 . .

u

r1  . . .

d

Write After Read

. . . . r1 . .

u

“True” dependence: arises

from actual flow of values

Data Dependences

Read After Write

r1  . . .

d

. .  . . r1 . .

u

r1  . . .

d

Write After Read

. . . . r1 . .

u

r1  . . .

d2

Write After Write

r1  . . .

d1

“True” dependence: arises

from actual flow of values

Data Dependences

Read After Write

r1  . . .

d

. .  . . r1 . .

u

r1  . . .

d

Write After Read

. . . . r1 . .

u

r1  . . .

d2

Write After Write

r1  . . .

d1

“False”/”name” dependences: arise from reuse of location; can often be avoided by (dynamic) renaming

“True” dependence: arises

from actual flow of values

Eliminating false dependencies

WAW and WAR dependencies can often eliminated by register renaming…

… at the cost of adding registers...

Eliminating false dependencies

r6

r6

WAW and WAR dependencies can often eliminated by register renaming…

… at the cost of adding registers...

Eliminating false dependences

WAR dependencies can often be replaced by RAW dependencies

... at the price of using yet another register, and a (move) instruction ….

r6

r6

Eliminating false dependences

r6

r6

WAR dependencies can often be replaced by RAW dependencies

... at the price of using yet another register, and a (move) instruction ….

r6

r6

r8 = r5

r8

Eliminating false dependences

r6

r6

WAR dependencies can often be replaced by RAW dependencies

... at the price of using yet another register, and a (move) instruction ….

r6

r6

r8 = r5

r8

In fact, the WAR dependence on r5 already is respected/implied by the RAW dependence on r6 here!

Control Dependence

Node y is control dependent on x if

• x is a branch, with successors u, v

• y post-dominates u in the CFG: each path from u to EXIT includes y

• y does not post-dominate v in the CFG: there is a path from v to

EXIT that avoids y

EXIT

Y

VU

X

Schedule must respect control dependences:

don’t move instructions past their control

dependence ancestors!

Dependences

eg load, depending on cache-hit/miss

Program dependence graph: overlay of data dependence graph with control

dependencies (two kinds of edges)

Hardware Scheduling

/

- control flow resolved

RISC-style processor pipeline

• retrieve instruction from memory

• increment PC

• translate opcode into signals for later stages

• read operands from registers

• carry out specified

ALU operation

• perform memory loads/stores

• write-back of result

to register

FETCH DECODE MEMEXECUTE WRITE

• many more stages (up to 20-30)

• different stages take different number of cycles per instruction

• some (components of) stages duplicated, eg super-scalar

• each stage can only hold a fixed number of instruction per cycle

• but: instructions can be in-flight concurrently (pipeline – more later)

• register bank can only serve small number of reads/writes per cycle

Modern processors:

Common characteristics: resource constraints

Goal of scheduling

Construct a sorted version of the dependence graph that

• produces the same result as the sequential program:

respect dependencies, latencies

• obeys the resource constrains

• minimizes execution time (other metrics possible)

Goal of scheduling

Construct a sorted version of the dependence graph that

• produces the same result as the sequential program:

respect dependencies, latencies

• obeys the resource constrains

• minimizes execution time (other metrics possible)

Even simplified version of the scheduling problem are typically NP-hard

 heuristics

Solution formulated as a table that indicates the issue cycle of each instruction:

Cycle Resoure 1 Resource 2 … Resource n

1 1 2

2 3 4

3

:

A classification of scheduling heuristics

Schedule within a basic block (local)

• instructions cannot move past basic block boundaries

• schedule covers only one basic block

Example technique: (priority) list scheduling

y = . . .
x = . . .

M[z] = . . .

A classification of scheduling heuristics

Schedule within a basic block (local)

• instructions cannot move past basic block boundaries

• schedule covers only one basic block

Example technique: (priority) list scheduling

y = . . .
x = . . .

M[z] = . . .

Scheduling across basic blocks (global)

• instructions move past basic block boundaries

• schedule typically covers a (frequently executed) trace

Example technique: trace scheduling

A classification of scheduling heuristics

Schedule within a basic block (local)

• instructions cannot move past basic block boundaries

• schedule covers only one basic block

Example technique: (priority) list scheduling

y = . . .
x = . . .

M[z] = . . .

Scheduling across basic blocks (global)

• instructions move past basic block boundaries

• schedule typically covers a (frequently executed) trace

Example technique: trace scheduling

Loop scheduling

• instructions cannot move past basic block boundaries

• each schedule covers body of a loop

• exploits/reflects pipeline structure of modern processors

Example technique: SW pipelining, modulo scheduling

Local scheduling: list scheduling

Advantage: can disregard control dependencies

• data dependence graph of straight-line code,

annotated with (conservative) latencies

• instruction forms annotated with suitable type of Functional Units

• #available Functional Units of each type

Input:

Integer-ALU FP MEM

2 1 1

Local scheduling: list scheduling

Advantage: can disregard control dependencies

• data dependence graph of straight-line code,

annotated with (conservative) latencies

• instruction forms annotated with suitable type of Functional Units

• #available Functional Units of each type

Can be refined for pipelined architectures, where latency != reservation period for FU

Input:

Integer-ALU FP MEM

2 1 1

Output: cycle-accurate assignment

of instructions to functional units

Cycle ALU1 ALU2 FP MEM

1

2

3

4

5

6

Local scheduling: list scheduling

Advantage: can disregard control dependencies

• data dependence graph of straight-line code,

annotated with (conservative) latencies

• instruction forms annotated with suitable type of Functional Units

• #available Functional Units of each type

Can be refined for pipelined architectures, where latency != reservation period for FU

Input:

Integer-ALU FP MEM

2 1 1

Output: cycle-accurate assignment

of instructions to functional units

Cycle ALU1 ALU2 FP MEM

1 1 2

2

3

4 3 4

5

6 5 6

List scheduling: algorithm (sketch)

1. Insert nodes that have no predecessors into queue

2. Start with cycle count c=1

List scheduling: algorithm (sketch)

1. Insert nodes that have no predecessors into queue

2. Start with cycle count c=1

3. While queue not empty:

• select an instruction i from the queue such that all predecessors

were scheduled “sufficiently long ago” (latency information)

priority: e.g. length of path to EXIT, maybe weighted

by latency of RAW (+WAW/WAR?) deps

List scheduling: algorithm (sketch)

1. Insert nodes that have no predecessors into queue

2. Start with cycle count c=1

3. While queue not empty:

• select an instruction i from the queue such that all predecessors

were scheduled “sufficiently long ago” (latency information)

• if a functional unit u for i is available:

• insert i in (c, u), and remove it from the queue

• insert any successor of i into queue for which all

predecessors have now been scheduled

priority: e.g. length of path to EXIT, maybe weighted

by latency of RAW (+WAW/WAR?) deps

List scheduling: algorithm (sketch)

1. Insert nodes that have no predecessors into queue

2. Start with cycle count c=1

3. While queue not empty:

• select an instruction i from the queue such that all predecessors

were scheduled “sufficiently long ago” (latency information)

• if a functional unit u for i is available:

• insert i in (c, u), and remove it from the queue

• insert any successor of i into queue for which all

predecessors have now been scheduled

• if no functional unit is available for i, select another instruction

priority: e.g. length of path to EXIT, maybe weighted

by latency of RAW (+WAW/WAR?) deps

List scheduling: algorithm (sketch)

1. Insert nodes that have no predecessors into queue

2. Start with cycle count c=1

3. While queue not empty:

• select an instruction i from the queue such that all predecessors

were scheduled “sufficiently long ago” (latency information)

• if a functional unit u for i is available:

• insert i in (c, u), and remove it from the queue

• insert any successor of i into queue for which all

predecessors have now been scheduled

• if no functional unit is available for i, select another instruction

• if no instruction from the queue was scheduled, increment c

priority: e.g. length of path to EXIT, maybe weighted

by latency of RAW (+WAW/WAR?) deps

List scheduling: algorithm

1. Insert nodes that have no predecessors into queue

2. Start with cycle count c=1

3. While queue not empty:

• select an instruction i from the queue such that all predecessors

were scheduled “sufficiently long ago” (latency information)

• if a functional unit u for i is available:

• insert i in (c, u), and remove it from the queue

• insert any successor of i into queue for which all

predecessors have now been scheduled

• if no functional unit is available for i, select another instruction

• if no instruction from the queue was scheduled, increment c

• start at nodes without successors and cycle count LAST

• work upwards, entering finish times of instructions in table

• availability of FU’s still governed by start times

Variation:

priority: e.g. length of path to EXIT, maybe weighted

by latency of RAW (+WAW/WAR?) deps

Trace scheduling

Observation: individual basic blocks often don’t have much ILP

• speed-up limited

• many slots in list schedule remain empty: poor resource utilization

• problem is accentuated by deep pipelines, where many

instructions could be concurrently in-flight

Q: How can we extend scheduling to many basic blocks?

Trace scheduling

Observation: individual basic blocks often don’t have much ILP

• speed-up limited

• many slots in list schedule remain empty: poor resource utilization

• problem is accentuated by deep pipelines, where many

instructions could be concurrently in-flight

• select instructions along frequently executed traces

• schedule trace members using list scheduling

• adjust off-trace code to deal with executions that only traverse

parts of the trace

e.g. by profiling, counting the

traversals of each CFG edge

acyclic path through CFG

Joseph A. Fisher: Trace Scheduling: A Technique for Global Microcode Compaction.

IEEE Trans. Computers 30(7): 478-490 (1981)Details:

Q: How can we extend scheduling to many basic blocks?

A: By considering sets of basic blocks that are often executed together

http://dblp.uni-trier.de/db/journals/tc/tc30.html#Fisher81

Trace scheduling

A trace t, and its neighbors.

1. construct data dependence graph of

instructions on trace, but consider liveIn’s

of A to be read by b.

CA B2

B3

B4

off-trace

successor

off-trace

predecessor

j
join point

B1

branch

point

(cjump)

b

Trace scheduling

A trace t, and its neighbors.

1. construct data dependence graph of

instructions on trace, but consider liveIn’s

of A to be read by b.

2. (list-)schedule instructions in t
CA B2

B3

B4

off-trace

successor

off-trace

predecessor

j
join point

B1

branch

point

(cjump)

b

C

A B

j

b

Trace scheduling

A trace t, and its neighbors.

1. construct data dependence graph of

instructions on trace, but consider liveIn’s

of A to be read by b.

2. (list-)schedule instructions in t
CA B2

B3

B4

off-trace

successor

off-trace

predecessor

j
join point

B1

branch

point

(cjump)

b

C

A B

j

b

prevents those

instructions in B2, B3,

B4 that define

variables that are

used in A from being

moved up past b, by

creating a WAR

dependence.

Trace scheduling

A trace t, and its neighbors.

1. construct data dependence graph of

instructions on trace, but consider liveIn’s

of A liveIn of b.

2. (list-)schedule instructions in t

3. adjust code outside of tCA B2

B3

B4

off-trace

successor

off-trace

predecessor

j
join point

B1

branch

point

(cjump)

b

C

A B

j

b C

A

B

j

b

S
J

Trace scheduling: compensation code S

In step 2, some instructions in B1 end up above s in B,

others below.

A B2

B3

B4

j

B1

s

A B

j

s

Trace scheduling: compensation code S

In step 2, some instructions in B1 end up above s in B,

others below.

Copy the latter ones into the edge s A, into a new

block S so that they’re executed when control flow

follows B1 s A, but not when A is entered

through a different edge.

A B2

B3

B4

j

B1

s

A B

j

s

A

B

j

s

S

B3

j

B2

B4

B1

b

Trace scheduling: adjust code jumping to j

In step 2, some instructions in B2 end up above j in B,

others below.

C

B
j

b

C

B3

j

B2

B4

B1

b

Trace scheduling: adjust code jumping to j

In step 2, some instructions in B2 end up above j in B,

others below.

Adjust the jump in C to point to the first instruction

(bundle) following the last instruction in B that stems

from B2 – call the new jump target j’. Thus yellow

instructions remain non-executed if control enters B

from C: all instructions from B2 are above j’.

C

B
j

b

C

C

B
j

b

j’

Note: if there’s no yellow instruction, we’re in fact adjusting j upwards: j’ follows the last purple instruction.

Trace scheduling: adjusting code jumping into B

Next, some instructions from B3/B4 end up

above j’ in B, others below.

B3

j

B2

B4

B1

b

C C

B

b

j’

Trace scheduling: adjust code jumping to j

Next, some instructions from B3/B4 end up

above j’ in B, others below. Copy the former

ones into the edge C j’, into a new block J,

ensuring that instructions following j’ receive

correct data when flow enters B via C.

B3

j

B2

B4

B1

b

C C

B

b

j’

J

C

B

b

j’

Trace scheduling: cleaning up S and J

Next, some instructions from B3/B4 end up

above j’ in B, others below. Copy the former

ones into the edge C j’, into a new block J,

ensuring that instructions following j’ receive

correct data when flow enters B via C.

B3

j

B2

B4

B1

b

C C

B

b

j’

J

C

B

b

j’

Final cleanup: some instructions in S and J may

be dead – eliminate them. Then, S and J can be

(list-)scheduled or be part of the next trace.

Pipelining

Purely sequential execution:

Pipelining - can partially overlap instructions:

. . .FETCH DECODE MEMEXECUTE WRITE FETCH DECODE MEMEXECUTE

FETCH DECODE MEMEXECUTE WRITE

FETCH DECODE MEMEXECUTE WRITE

FETCH DECODE MEMEXECUTE WRITE

:

One instruction issued (and retired) each cycle – speedup ≈ pipeline depth

Pipelining

Purely sequential execution:

Pipelining - can partially overlap instructions:

. . .FETCH DECODE MEMEXECUTE WRITE FETCH DECODE MEMEXECUTE

FETCH DECODE MEMEXECUTE WRITE

FETCH DECODE MEMEXECUTE WRITE

FETCH DECODE MEMEXECUTE WRITE

:

… assuming that • each instruction spends one cycle in each stage

• all instruction forms visit same (sequence of) FU’s

• there are no (data) dependencies

One instruction issued (and retired) each cycle – speedup ≈ pipeline depth

Pipelining for realistic processors

Different instructions visit different sets/sequences of functional units,

and occasionally multiple types of functional units in the same cycle:

FETCH READ UNPACK WRITE
ADD

SHIFT

ADD

ROUND

SHIFT

ROUND

MULTA WRITEFETCH READ UNPACK ROUND
ADD

MULTB
MULTBMULTAMULTA

WRITEFETCH READ UNPACK ROUNDADD SHIFTROUND SHIFT ADD

Example: floating point instructions on MIPS R4000 (ADD, MUL, CONV)

Pipelining for realistic processors

Different instructions visit different sets/sequences of functional units,

and occasionally multiple types of functional units in the same cycle:

Contention for FU’s means some pipelinings must be avoided:

FETCH READ UNPACK WRITE
ADD

SHIFT

ADD

ROUND

SHIFT

ROUND

MULTA WRITEFETCH READ UNPACK ROUND
ADD

MULTB
MULTBMULTAMULTA

WRITEFETCH READ UNPACK ROUNDADD SHIFTROUND SHIFT ADD

Example: floating point instructions on MIPS R4000 (ADD, MUL, CONV)

MULTA WRITEFETCH READ UNPACK ROUND
ADD

MULTB
MULTBMULTAMULTA

FETCH READ UNPACK WRITE
ADD

SHIFT

ADD

ROUND

SHIFT

ROUND

Pipelining constraints: data dependencies

FETCH READ UNPACK WRITE
ADD

SHIFT

ADD

ROUND

SHIFT

ROUND

FETCH READ UNPACK

RAW dependency:

. . .

Pipelining constraints: data dependencies

FETCH READ UNPACK WRITE
ADD

SHIFT

ADD

ROUND

SHIFT

ROUND

FETCH READ UNPACK

RAW dependency:

. . .

Register bypassing / operand forwarding: extra HW to

communicate data directly between FU’s

FETCH READ UNPACK WRITE
ADD

SHIFT

ADD

ROUND

SHIFT

ROUND

FETCH READ UNPACK ADD ROUND

Result of one stage is available at another stage in the next cycle.

Loop scheduling without resource bounds

• illustrates use of loop unrolling and introduces

terminology for full SW pipelining

• but not useful in practice

for i 1 to N
a  j ◊ V [i – 1]

b  a ◊ f

c  e ◊ j

d  f ◊ c

e  b ◊ d

f  U [i]

g: V [i]  b

h: W [i]  d

j  X [i]

◊ some binary op(s)

scalar replacement

make “iteration

index” explicit

Loop scheduling without resource bounds

• illustrates use of loop unrolling and introduces

terminology for full SW pipelining

• but not useful in practice

for i 1 to N
a  j ◊ V [i – 1]

b  a ◊ f

c  e ◊ j

d  f ◊ c

e  b ◊ d

f  U [i]

g: V [i]  b

h: W [i]  d

j  X [i]

◊ some binary op(s)

for i 1 to N
a i j i - 1 ◊ b i - 1

b i a i ◊ f i - 1

c i e i - 1 ◊ j i - 1

d i f i - 1 ◊ c i

e i b i ◊ d i

f i U [i]

g: V [i]  b i

h: W [i]  d i

j i X [i]

scalar replacement

make “iteration

index” explicit

Scalar replacement: poor-man’s alternative

to alias analysis (again) but often helpful

Loop scheduling without resource bounds

for i 1 to N
a i j i - 1 ◊ b i - 1

b i a i ◊ f i - 1

c i e i - 1 ◊ j i - 1

d i f i - 1 ◊ c i

e i b i ◊ d i

f i U [i]

g: V [i]  b i

h: W [i]  d i

j i X [i]

Data dependence graph of body

same-iteration dependence

a

b

c

d

e

f

g

j

h

cross-iteration dependence

Loop scheduling without resource bounds

Data dependence graph of unrolled body – acyclic!

same-iteration dependence

a

b

c

d

e

f

g

j

h

cross-iteration dependence

a

b

c

d

e

f

g

j

h

a

b

c

d

e

f

g

j

h

1

1

1
1

1

1

11

1

2

2

2

2

2

2

2

2

2

.

Loop scheduling without resource bounds

Arrange in tableau

• rows: cycles

• columns: iterations

• unlimited resources

1 2 3 4 5 6

1 a c f j f j f j f j f j f j

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Loop scheduling without resource bounds

Arrange in tableau 1 2 3 4 5 6

1 a c f j f j f j f j f j f j

2 b d

3

4

5

6

7

8

9

10

11

12

13

14

15

Loop scheduling without resource bounds

Arrange in tableau 1 2 3 4 5 6

1 a c f j f j f j f j f j f j

2 b d

3 e g h a

4

5

6

7

8

9

10

11

12

13

14

15

Loop scheduling without resource bounds

Arrange in tableau 1 2 3 4 5 6

1 a c f j f j f j f j f j f j

2 b d

3 e g h a

4 b c

5

6

7

8

9

10

11

12

13

14

15

Loop scheduling without resource bounds

… some more iterations. 1 2 3 4 5 6

1 a c f j f j f j f j f j f j

2 b d

3 e g h a

4 b c

5 d g a

6 e h b

7 c g a

8 d b

9 e h g a

10 c b

11 d g a

12 e h b

13 c g

14 d

15 e h

Loop scheduling without resource bounds

Identify groups of

instructions; note gaps

1 2 3 4 5 6

1 a c f j f j f j f j f j f j

2 b d :

3 e g h a XX

4 b c :

5 d g a

6 e h b

7 c g a

8 d b

9 e h g a

10 c b

11 d g a

12 e h XX b

13 c g

14 d XX

15 e h XX

slope 0

Loop scheduling without resource bounds

Close gaps by delaying fast

instruction groups

1 2 3 4 5 6

1 a c f j

2 b d f j

3 e g h a

4 b c f j

5 d g a

6 e h b f j

7 c g a

8 d b

9 e h g f j

10 c a

11 d b

12 e h g f j

13 c a

14 d b

15 e h g

Loop scheduling without resource bounds

Identify “steady state” – of

slope 3

1 2 3 4 5 6

1 a c f j

2 b d f j

3 e g h a

4 b c f j

5 d g a

6 e h b f j

7 c g a

8 d b

9 e h g f j

10 c a

11 d b

12 e h g f j

13 c a

14 d b

15 e h gepilogue

prologue

Loop scheduling without resource bounds

Expand instructions
• No cycle has > 5 instructions

• Instructions in a row execute in parallel;

reads in RHS happen before writes in LHS

1. Prologue – also set up i

a1  j0 ◊ b0 c1  e0 ◊ j0 f1  U[1] j1  X[1]

b1  a1 ◊ f0 d1  f0 ◊ c1 f2  U[2] j2  X[2]

e1  b1 ◊ d1 V[1]  b1 W[1]  d1 a2  j1 ◊ b1

b2  a2 ◊ f1 c2  e1 ◊ j1 f3  U[3] j3  X[3]

d2  f1 ◊ c2 V[2]  b2 a3  j2 ◊ b2

e2  b2 ◊ d2 W[2]  d2 b3  a3 ◊ f2 f4  U[4] j4  X[4]

c3  e2 ◊ j2 V[3]  b3 a4  j3 ◊ b3 i  3

Loop scheduling without resource bounds

Expand instructions
• no cycle has > 5 instructions

• Instructions in a row execute in parallel;

reads in RHS happen before writes in LHS

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi

ei  bi ◊ di W[i]  di V[i+1]
 bi+1

fi+2

 U[i+2]
ji+2

 X[i+2]

ci+1  ei ◊ ji ai+2 

ji+1 ◊ bi+1

i  i + 1 if i < N-2
goto L

2. Loop body – also increment counter and insert (modified) exit condition

L:
incorrect index ai in MCIML book

As expected, the loop body has one copy of each

instruction a-j, plus induction variable update + test

Loop scheduling without resource bounds

Expand instructions
• no cycle has > 5 instructions

• Instructions in a row execute in parallel;

reads in RHS happen before writes in LHS

dN-1 

fN-1 ◊ cN-2

bN  aN ◊ fN-1

eN-1 

bN-1 ◊ dN-1

W[N-1]
 dN-1

V[N]  bN

cN 

eN-1 ◊ jN-1

dN  fN ◊ cN-1

eN  bN ◊ dN W[N] dN

3. Loop epilogue – finish all N iterations

Loop scheduling without resource bounds

dN-1  fN-1 ◊ cN-2 bN  aN ◊ fN-1

eN-1  bN-1 ◊ dN-1 W[N-1] dN-1 V[N]  bN

cN  eN-1 ◊ jN-1

dN  fN ◊ cN-1

eN  bN ◊ dN W[N] dN

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi

ei  bi ◊ di W[i]  di V[i+1]  bi+1 fi+2  U[i+2] ji+2  X[i+2]

ci+1  ei ◊ ji ai+2  ji+1 ◊ bi+1 i  i + 1 if i < N-2 goto L

a1  j0 ◊ b0 c1  e0 ◊ j0 f1  U[1] j1  X[1]

b1  a1 ◊ f0 d1  f0 ◊ c1 f2  U[2] j2  X[2]

e1  b1 ◊ d1 V[1]  b1 W[1]  d1 a2  j1 ◊ b1

b2  a2 ◊ f1 c2  e1 ◊ j1 f3  U[3] j3  X[3]

d2  f1 ◊ c2 V[2]  b2 a3  j2 ◊ b2

e2  b2 ◊ d2 W[2]  d2 b3  a3 ◊ f2 f4  U[4] j4  X[4]

c3  e2 ◊ j2 V[3]  b3 a4  j3 ◊ b3 i  3

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi

ei  bi ◊ di W[i]  di V[i+1]  bi+1 fi+2  U[i+2] ji+2  X[i+2]

ci+1  ei ◊ ji ai+2  ji+1 ◊ bi+1 i  i + 1 if i < N-2 goto L

Loop scheduling without resource bounds

Final step: eliminate indices i from variables – want

“constant” variables/registers in body!

need 3 copies of j since up to 3 copies are live: ji+2 j, ji+1 j’, ji j’’

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi

ei  bi ◊ di W[i]  di V[i+1]  bi+1 fi+2  U[i+2] j X[i+2]

ci+1  ei ◊ j’’ ai+2  j’ ◊ bi+1 i  i + 1 if i < N-2 goto L

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi

ei  bi ◊ di W[i]  di V[i+1]  bi+1 fi+2  U[i+2] ji+2  X[i+2]

ci+1  ei ◊ ji ai+2  ji+1 ◊ bi+1 i  i + 1 if i < N-2 goto L

Loop scheduling without resource bounds

Final step: eliminate indices i from variables – want

“constant” variables/registers in body!

need 3 copies of j since up to 3 copies are live: ji+2 j, ji+1 j’, ji j’’

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi j’’  j’ j’  j

ei  bi ◊ di W[i]  di V[i+1]  bi+1 fi+2  U[i+2] j X[i+2]

ci+1  ei ◊ j’’ ai+2  j’ ◊ bi+1 i  i + 1 if i < N-2 goto L

di  fi-1 ◊ ci bi+1  ai+1 ◊ fi

ei  bi ◊ di W[i]  di V[i+1]  bi+1 fi+2  U[i+2] ji+2  X[i+2]

ci+1  ei ◊ ji ai+2  ji+1 ◊ bi+1 i  i + 1 if i < N-2 goto L

Loop scheduling without resource bounds

Final step: eliminate indices i from variables – want

“constant” variables/registers in body!

need 3 copies of j since up to 3 copies are live: ji+2 j, ji+1 j’, ji j’’

• the copies live across an iteration need to be updated in each iteration.

• also, need to initialize the live-in copies of the loop at the end of prologue (j, j’)

• also, can replace the indexed live-in copies of the epilogue with primed versions

• all this for all variables a, ..j (see book – modulo typo regarding a, a’)

Loop scheduling without resource bounds

Summary of main steps

1. calculate data dependence graph of unrolled loop

2. schedule each instruction from each loop as early as possible

3. plot the tableau of iterations versus cycles

4. identify groups of instructions, and their slopes

5. coalesce the slopes by slowing down fast instruction groups

6. identify steady state, and loop prologue and epilogue

7. reroll the loop, removing the iteration-indexed variable names

Loop scheduling with resource bounds

• data dependences of loop, with latency annotations

• resource requirements of all instruction forms:

ADD

MUL

• #available Functional Units of each type, and descriptions of FU types:

• # of instructions that can be issued in one cycle,

• restrictions which instruction forms can be issued simultaneously etc

Input:

Loop scheduling with resource bounds

• data dependences of loop, with latency annotations

• resource requirements of all instruction forms:

ADD

MUL

• #available Functional Units of each type, and descriptions of FU types:

• # of instructions that can be issued in one cycle,

• restrictions which instruction forms can be issued simultaneously etc

Input:

Modulo scheduling:

• find schedule that satisfies resource and (data) dependency requirements;

then do register allocation

• try to schedule loop body using Δ cycles, for Δ = Δmin, Δmin + 1, Δmin + 2 . . .

• body surrounded by prologue and epilogue as before

Modulo scheduling: where’s the mod?

Observation: if resource constraints prevent an instruction from

being scheduled at time t, they also prevent t from being scheduled

at times t + Δ, t + 2Δ, . . . or indeed any t’ with t = t’ mod Δ.

Example: Δ=3, machine can only execute 1 load instruction at a

time, loop body from previous example

0

1 fi  U [i] ji  X [i]

2

Modulo scheduling: where’s the mod?

Observation: if resource constraints prevent an instruction from

being scheduled at time t, they also prevent t from being scheduled

at times t + Δ, t + 2Δ, . . . or indeed any t’ with t = t’ mod Δ.

Example: Δ=3, machine can only execute 1 load instruction at a

time, loop body from previous example

0

1 fi  U [i] ji  X [i]

2

0 fi  U [i]

1 ji  X [i]

2

0

1 ji  X [i]

2 fi  U [i]

Modulo scheduling: where’s the mod?

Observation: if resource constraints prevent an instruction from

being scheduled at time t, they also prevent t from being scheduled

at times t + Δ, t + 2Δ, . . . or indeed any t’ with t = t’ mod Δ.

Example: Δ=3, machine can only execute 1 load instruction at a

time, loop body from previous example

0

1 fi  U [i] ji  X [i]

2

0 fi  U [i]

1 ji  X [i]

2

0

1 ji  X [i]

2 fi  U [i]

0

1 ji  X [i]

2=-1 fi+1  U [i]

0=3 fi-1  U [i]

1 ji  X [i]

2

Modulo scheduling: where’s the mod?

Observation: if resource constraints prevent an instruction from

being scheduled at time t, they also prevent t from being scheduled

at times t + Δ, t + 2Δ, . . . or indeed any t’ with t = t’ mod Δ.

Example: Δ=3, machine can only execute 1 load instruction at a

time, loop body from previous example

0

1 fi  U [i] ji  X [i]

2

0

1=4 fi-1  U [i-1] ji  X [i]

2

0 fi  U [i]

1 ji  X [i]

2

0

1 ji  X [i]

2 fi  U [i]

0

1 ji  X [i]

2=-1 fi+1  U [i]

0=3 fi-1  U [i]

1 ji  X [i]

2

Modulo scheduling

Interaction with register allocation:

• delaying an instruction d: z  x op y

• extends the liveness-range of d’s uses, namely x and y;

may overlap with other (iteration count-indexed) versions of z, so

may need to maintain multiple copies, as in previous example

• shortens liveness range of the def(s) of d, namely, z, to its uses;

range < 1 illegal; ie need to postpone uses, too

• similarly, schedudling an instruction earlier shortens the liveness

ranges of its uses and extends the liveness range of its defs

• hence, scheduling affects liveness/register allocation

Modulo scheduling: estimating Δmin

Identification of Δmin as the maximum of the following:

• resource estimator: for each FU

• calculate requested cycles: add cycle requests of all

instructions mapped to that FU

• divide request by number of instances of the FU type

• max over all FU types is lower bound on Δmax

• data-dependence estimator: sum of latencies along a simple cycle

through the data dependence graph

Modulo scheduling: estimating Δmin

Identification of Δmin as the maximum of the following:

• resource estimator: for each FU

• calculate requested cycles: add cycle requests of all

instructions mapped to that FU

• divide request by number of instances of the FU type

• max over all FU types is lower bound on Δmax

• data-dependence estimator: sum of latencies along a simple cycle

through the data dependence graph

Example: 1 ALU, 1 MEM; both issue 1 instruction/cycle; instr. latency 1 cycle

Data dependence estimator: 3 (c  d  e  c)

(MEM instructions in box)

ALU-estimator: 5 instrs, 1 cycle each, 1 ALU  5

MEM-estimator: 4 instrs, 1 cycle each, 1 MEM  4

Hence Δmin = 5

Modulo scheduling: priority of instructions

Algorithm schedules instructions according to priorities

Possible metrics:

• membership in data dependence cycle of max latency

• execution on FU type that’s most heavily used (resource estimate)

Example: [c, d, e, a, b, f, j, g, h]

(MEM instructions in box)

Modulo scheduling: sketch of algorithm

• pick highest-priority instruction that’s not yet scheduled: i

• schedule i at earliest cycle that

• respects the data dependencies w.r.t. the already scheduled instructions

• has the right FU for i available

• if i can’t be scheduled for current Δ, place i without respecting resource

constraint: evict current inhabitant and/or data-dependence successors of i

hat are now scheduled too early. Evictees need to scheduled again.

• in principle evictions could go on forever

• define a cut-off (heuristics) at which point Δ is increased

Main data structures:

• array SchedTime, assigning to each

instruction a cycle time

• table ResourceMap, assigning to each

FU and cycle time < Δ an instruction

Instr 1 8

Instr 2 4

Instr 3 0

: :

FU1 FU2

0 Instr 1 Instr 4

1 Instr 2

2 Instr 3

: : :

Modulo scheduling: example

a

b

c

d

e

f

g

h

j

ALU MEM

0

1

2

3

4
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: c

• earliest cycle with free ALU s.t. data-deps

w.r.t. scheduled instructions are respected: 0

• highest-priority, unscheduled instruction: c

• earliest cycle with free ALU s.t. data-deps

w.r.t. scheduled instructions are respected: 0

• so schedule c in cycle 0

Modulo scheduling: example

a

b

c 0

d

e

f

g

h

j

ALU MEM

0 c

1

2

3

4
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

Modulo scheduling: example

a 3

b

c 0

d 1

e 2

f

g

h

j

ALU MEM

0 c

1 d

2 e

3 a

4
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: d

• earliest cycle with free ALU s.t. data-deps

w.r.t. scheduled instructions are respected: 1

• so schedule d in cycle 1

Similarly: e  2, a  3. Next instruction: b

Modulo scheduling: example

a 3

b

c 0

d 1

e 2

f

g

h

j

ALU MEM

0 c

1 d

2 e

3 a

4
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: d

• earliest cycle with free ALU s.t. data-deps

w.r.t. scheduled instructions are respected: 1

• so schedule d in cycle 1

Similarly: e  2, a  3. Next instruction: b

Earliest cycle in which ALU is available: 4. But: b’s

successor e is scheduled in (earlier) cycle 2!

Hence: place b in cycle 4, but evict e.

Modulo scheduling: example

a 3

b 4

c 0

d 1

e 2

f

g

h

j

ALU MEM

0 c

1 d

2 e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: d

• earliest cycle with free ALU s.t. data-deps

w.r.t. scheduled instructions are respected: 1

• so schedule d in cycle 1

Similarly: e  2, a  3. Next instruction: b

Earliest cycle in which ALU is available: 4. But: b’s

successor e is scheduled in (earlier) cycle 2!

Hence: place b in cycle 4, but evict e.

Modulo scheduling: example

a 3

b 4

c 0

d 1

e 2

f

g

h

j

ALU MEM

0 c

1 d

2 e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: e

• ALU-slot for e: 2 (again)

• But: data dependence e c violated –

yes, cross iteration deps count!

So: schedule e in cycle 7 (= 2 mod Δ), but evict c -

see next slide…

Modulo scheduling: example

a 3

b 4

c 0

d 1

e 2 7

f

g

h

j

ALU MEM

0 c

1 d

2 e e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: c

• ALU-slot for c: 0 (again)

• But: data dependence c d violated

So, schedule c in cycle 5 (= 0 mod Δ), but evict d –

see next slide…

Modulo scheduling: example

a 3

b 4

c 0 5

d 1

e 2 7

f

g

h

j

ALU MEM

0 c c

1 d

2 e e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: d

• ALU-slot for d: 1 (again)

• Hooray - data dependence d e respected

So, schedule d in cycle 6 (= 1 mod Δ). No eviction –

see next slide…

Modulo scheduling: example

a 3

b 4

c 0 5

d 1 6

e 2 7

f

g

h

j

ALU MEM

0 c c

1 d d

2 e e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: f

• MEM-slot for f: 0; no data-deps, so schedule f:0

Modulo scheduling: example

a 3

b 4

c 0 5

d 1 6

e 2 7

f 0

g

h

j

ALU MEM

0 c c f

1 d d

2 e e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: f

• MEM-slot for f: 0; no data-deps, so schedule f:0

• highest-priority, unscheduled instruction: j

• MEM-slot for j: 1; no data-deps, so schedule j:1

• highest-priority, unscheduled instruction: g

• MEM-slot for g: 2; and earliest cycle c = 2+ k*Δ

where data-dep bg is respected is 7.

So schedule g:7 – see next slide…

Modulo scheduling: example

a 3

b 4

c 0 5

d 1 6

e 2 7

f 0

g 7

h

j 1

ALU MEM

0 c c f

1 d d j

2 e e g

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: h

• MEM-slot for h: 3; earliest cycle c = 3 + k*Δ

where data-dep d h is respected is 8.

So schedule h:8 – final schedule on next slide.

Modulo scheduling: example

a 3

b 4

c 5

d 6

e 7

f 0

g 7

h 8

j 1

ALU MEM

0 c f

1 d j

2 e g

3 a h

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

Instructions c, d, e, g, h are scheduled 1 iteration off.

Modulo scheduling: example

a 3

b 4

c 0 5

d 1

e 2 7

f

g

h

j

ALU MEM

0 c c

1 d

2 e e

3 a

4 b
Δ

m
in

=
 5

[c, d, e, a, b, f, j, g, h]

• highest-priority, unscheduled instruction: c

• ALU-slot for c: 0 (again)

• But: data dependence c d violated

So, schedule c in cycle 5 (= 0 mod Δ), but evict d…

Summary of scheduling

Challenges arise from interaction between

• program properties: data dependencies (RAW, WAR, WAW)

and control dependencies

• hardware constraints (FU availability, latencies, …)

Optimal solutions typically infeasible  heuristics

Scheduling within a basic block (local): list scheduling

Scheduling across basic blocks (global): trace scheduling

Loop scheduling: SW pipelining, modulo scheduling

