Lecture 13: Garbage Collection

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer/Mikkel Kringelbach



Garbage Collection

e Every modern programming language allows
programmers to allocate new storage dynamically
 New records, arrays, tuples, objects, closures, etc.

e Every modern language needs facilities for reclaiming
and recycling the storage used by programs

o It's usually the most complex aspect of the run-time
system for any modern language (Java, ML, Lisp,
Scheme, Modulg, ...)



Memory Layout

per process
virtual memory

new pages allocated physical memory
via calls to OS
T
heap \

static data ———

TLB address
translation

stack /
L1

grows to preset limit



GC

e What is garbage?
e A value is garbage if it will not be used in any subsequent
computation by the program

e Is it easy to determine which objects are garbage?



GC

e What is garbage?
e A value is garbage if it will not be used in any subsequent
computation by the program
e Is it easy to determine which objects are garbage?

e No. It's undecidable. Eg:
if long-and-tricky-computation then use v
else dont use v



GC

Since determining which objects are garbage is tricky,
people have come up with many different techniques

e It's the programmers problem:
o Explicit allocation/deallocation

o Reference counting

e Tracing garbage collection
e Mark-sweep, copying collection
e Generational GC



Explicit Memory Management

User library manages memory; programmer decides when and where
to allocate and deallocate

e void* malloc(long n)

e void free(void *addr)

e Library calls OS for more pages when necessary
e Advantage: people are smart

e Disadvantage: people are dumb and they really don’t want to
bother with such details if they can avoid it



Explicit MM

e How does malloc/free work?
o Blocks of unused memory stored on a freelist
o malloc: search free list for usable memory block
o free: put block onto the head of the freelist

freelist




Explicit MM

e Drawbacks

e malloc is not free: we might have to do a search to find a big
enough block

e As program runs, the heap fragments leaving many small,
unusable pieces

freelist




Explicit MM

Solutions:
o Use multiple free lists, one for each block size

e Malloc and free become O(1)
e But can run out of size 4 blocks, even though there are many size 6
blocks or size 2 blocks!
* Blocks are powers of 2
o Subdivide blocks to get the right size
e Adjacent free blocks merged into the next biggest size
o still possibly 30% wasted space
e Crucial point: there is no magic bullet. Memory management
always has a cost. We want to minimize costs and, these days,
maximize reliability.



Automatic MM

Languages with explicit MM are harder to program

e Always worrying about dangling pointers, memory leaks: a huge
software engineering burden

e Impossible to develop a secure system, impossible to use these
languages in emerging applications involving mobile code

 New languages tend to have automatic MM

e eg: Microsoft is pouring $$$ into developing safe language technology,
including a new research project on dependable operating system
construction



Automatic MM

Question: how do we decide which objects are garbage?
e Can't do it exactly

o Therefore, we conservatively approximate

e Normal solution: an object is garbage when it becomes
unreachable from the roots
e The roots = registers, stack, global static data

o If there is no path from the roots to an object, it cannot be
used later in the computation so we can safely recycle its
memory



Object Graph

rl—

Y

stack

e How should we test reachability?

r2




Object Graph

»
»

i

stack

r2

e How should we test reachability?



Reference Counting

o Keep track of the number of pointers to each object (the
reference count).

 When the reference count goes to 0, the object is
unreachable garbage



Object Graph

rl—

v
> > >
/ > > >

stack

r2
e Reference counting can't detect cycles



Reference Counting

In place of a single assignment x.f = p:

- 0Ouch, that hurts
performance-wise!

- Dataflow analysis can
eliminate some increments
and decrements, but many remain

Z = X.f

z.count =z.count- 1

If z.count = O call putOnFreelList(z)
Xf=p

p.count = p.count + 1 - Reference counting used in

some special cases but not
usually as the primary GC
mechanism in a language
Implementation



Copying Collection

e Basic idea: use 2 heaps
e One used by program
e The other unused until GC time
o GC:
e Start at the roots & traverse the reachable data

» Copy reachable data from the active heap (from-space) to the other
heap (to-space)

* Dead objects are left behind in from space
e Heaps switch roles



Copying Collection

from-space to-space

roots




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

root

next
(//scan




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

root next

Scan




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

next
root

Scan




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

next




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

next

root Scan




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

next
Scan

root




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

next
Scan

root

Done when
next = scan




Copying GC

e Cheney’s algorithm for copying collection

o Traverse data breadth first, copying objects from from-space to
to-space

next
Scan

root Done when

next = scan




Copying GC

e Pros
e Simple & collects cycles
e Run-time proportional to # live objects
e Automatic compaction eliminates fragmentation
e Fast allocation: pointer increment by object size

e Cons
» Precise type information required (pointer or not)
e Tag bits take extra space; normally use header word

e Twice as much memory used as program requires

e Usually, we anticipate live data will only be a small fragment of
store

e Allocate until 70% full
e From-space = 70% heap; to-space = 30%
e Long GC pauses = bad for interactive, real-time apps



Baker’s Concurrent GC

GC pauses avoided by doing GC incrementally
Program only holds pointers to to-space

On field fetch, if pointer to from-space, copy object and
fix pointer

e Extra fetch code = 20% performance penalty

e But no long pauses ==> better response time

On swap, copy roots as before



Generational GC

e Empirical observation: if an object has been reachable
for a long time, it is likely to remain so

e Empirical observation: in many languages (especially
functional languages), most objects died young

e Conclusion: we save work by scanning the young
objects frequently and the old objects infrequently



Generational GC

e Assign objects to different generations GO, G1,...
e GO contains young objects, most likely to be garbage
e GO scanned more often than G1
e Common case is two generations (new, tenured)

e Roots for GC of GO include all objects in G1 in addition to stack,
registers



Generational GC

How do we avoid scanning tenured objects?

e Observation: old objects rarely point to new objects

e Normally, object is created and when it initialized it will point to
older objects, not newer ones

* Only happens if old object modified well after it is created
e In functional languages that use mutation infrequently, pointers
from old to new are very uncommon
o Compiler inserts extra code on object field pointer write
to catch modifications to old objects

e Remembered set is used to keep track of objects that
point into younger generation. Remembered set
included in set of roots for scanning.



Generational GC

Other issues

e When do we promote objects from young generation to
old generation
e Usually after an object survives a collection, it will be promoted

e How big should the generations be?
e Appel says each should be exponentially larger than the last

e When do we collect the old generation?
o After several minor collections, we do a major collection



Generational GC

Other issues

e Sometimes different GC algorithms are used for the new
and older generations.
o Why? Because the have different characteristics

e Copying collection for the new

o Less than 10% of the new data is usually live

e Copying collection cost is proportional to the live data
e Mark-sweep for the old

e Mark reachable
e Sweep that not marked



