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Garbage Collection

• Every modern programming language allows 
programmers to allocate new storage dynamically

• New records, arrays, tuples, objects, closures, etc.

• Every modern language needs facilities for reclaiming 
and recycling the storage used by programs

• It’s usually the most complex aspect of the run-time 
system for any modern language (Java, ML, Lisp, 
Scheme, Modula, …)
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GC

• What is garbage?

• A value is garbage if it will not be used in any subsequent 
computation by the program
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GC

• What is garbage?

• A value is garbage if it will not be used in any subsequent 
computation by the program

• Is it easy to determine which objects are garbage?

• No.  It’s undecidable. Eg:

if long-and-tricky-computation then use v

else don’t use v



GC

Since determining which objects are garbage is tricky, 
people have come up with many different techniques

• It’s the programmers problem: 

• Explicit allocation/deallocation

• Reference counting

• Tracing garbage collection

• Mark-sweep, copying collection

• Generational GC



Explicit Memory Management

User library manages memory; programmer decides when and where 
to allocate and deallocate

• void* malloc(long n)

• void free(void *addr)

• Library calls OS for more pages when necessary

• Advantage: people are smart

• Disadvantage: people are dumb and they really don’t want to 
bother with such details if they can avoid it



Explicit MM

• How does malloc/free work?

• Blocks of unused memory stored on a freelist

• malloc: search free list for usable memory block

• free: put block onto the head of the freelist

freelist



Explicit MM

• Drawbacks

• malloc is not free:  we might have to do a search to find a big 
enough block

• As program runs, the heap fragments leaving many small, 
unusable pieces

freelist



Explicit MM

Solutions:

• Use multiple free lists, one for each block size
• Malloc and free become O(1)

• But can run out of size 4 blocks, even though there are many size 6 
blocks or size 2 blocks!

• Blocks are powers of 2
• Subdivide blocks to get the right size

• Adjacent free blocks merged into the next biggest size

• still possibly 30% wasted space

• Crucial point: there is no magic bullet.  Memory management 
always has a cost.  We want to minimize costs and, these days, 
maximize reliability.



Automatic MM

Languages with explicit MM are harder to program

• Always worrying about dangling pointers, memory leaks:  a huge 
software engineering burden

• Impossible to develop a secure system, impossible to use these 
languages in emerging applications involving mobile code

• New languages tend to have automatic MM
• eg:  Microsoft is pouring $$$ into developing safe language technology, 

including a new research project on dependable operating system 
construction



Automatic MM

Question: how do we decide which objects are garbage?

• Can’t do it exactly

• Therefore, we conservatively approximate

• Normal solution: an object is garbage when it becomes 
unreachable from the roots
• The roots = registers, stack, global static data

• If there is no path from the roots to an object, it cannot be 
used later in the computation so we can safely recycle its 
memory



Object Graph

• How should we test reachability?

r1

stack
r2
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Reference Counting

• Keep track of the number of pointers to each object (the 
reference count).

• When the reference count goes to 0, the object is 
unreachable garbage



Object Graph

• Reference counting can’t detect cycles

r1

stack
r2



Reference Counting

In place of a single assignment x.f = p:

z = x.f

z.count = z.count - 1

If z.count = 0 call putOnFreeList(z)

x.f = p

p.count = p.count + 1

- Ouch, that hurts

performance-wise!

- Dataflow analysis can 

eliminate some increments 

and decrements, but many remain

- Reference counting used in

some special cases but not 

usually as the primary GC 

mechanism in a language

implementation



Copying Collection

• Basic idea: use 2 heaps

• One used by program

• The other unused until GC time

• GC:

• Start at the roots & traverse the reachable data

• Copy reachable data from the active heap (from-space) to the other 
heap (to-space)

• Dead objects are left behind in from space

• Heaps switch roles



Copying Collection
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Copying GC

• Pros

• Simple & collects cycles

• Run-time proportional to # live objects

• Automatic compaction eliminates fragmentation

• Fast allocation: pointer increment by object size

• Cons

• Precise type information required (pointer or not)

• Tag bits take extra space; normally use header word

• Twice as much memory used as program requires

• Usually, we anticipate live data will only be a small fragment of 
store

• Allocate until 70% full

• From-space = 70% heap; to-space = 30%

• Long GC pauses = bad for interactive, real-time apps



Baker’s Concurrent GC

• GC pauses avoided by doing GC incrementally

• Program only holds pointers to to-space

• On field fetch, if pointer to from-space, copy object and 
fix pointer 

• Extra fetch code = 20% performance penalty

• But no long pauses ==> better response time

• On swap, copy roots as before



Generational GC

• Empirical observation: if an object has been reachable 
for a long time, it is likely to remain so

• Empirical observation: in many languages (especially 
functional languages), most objects died young

• Conclusion: we save work by scanning the young 
objects frequently and the old objects infrequently



Generational GC

• Assign objects to different generations G0, G1,…

• G0 contains young objects, most likely to be garbage

• G0 scanned more often than G1

• Common case is two generations (new, tenured)

• Roots for GC of G0 include all objects in G1 in addition to stack, 
registers



Generational GC

How do we avoid scanning tenured objects?

• Observation: old objects rarely point to new objects

• Normally, object is created and when it initialized it will point to 
older objects, not newer ones

• Only happens if old object modified well after it is created

• In functional languages that use mutation infrequently, pointers 
from old to new are very uncommon

• Compiler inserts extra code on object field pointer write 
to catch modifications to old objects

• Remembered set is used to keep track of objects that 
point into younger generation.  Remembered set 
included in set of roots for scanning.



Generational GC

Other issues

• When do we promote objects from young generation to 
old generation

• Usually after an object survives a collection, it will be promoted

• How big should the generations be?

• Appel says each should be exponentially larger than the last

• When do we collect the old generation?

• After several minor collections, we do a major collection



Generational GC

Other issues

• Sometimes different GC algorithms are used for the new 
and older generations.

• Why? Because the have different characteristics

• Copying collection for the new

• Less than 10% of the new data is usually live

• Copying collection cost is proportional to the live data

• Mark-sweep for the old

• Mark reachable

• Sweep that not marked


