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Structure of backend

Register allocation

• assigns machine registers (finite supply!) to virtual registers

• based on liveness analysis: interference graph

• primary approach: graph coloring

• spilling
• needed in case of insufficient supply of machine registers

• idea: hold values in memory (stack frame)

• transfer to/from registers to perform arithmetic ops, conditional branches, …

• architecture-specific requirements:
• caller/callee-save

• floating point vs integer, …



Recap: interference graph

Liveness conflicts: virtual registers x and y interfere if there is a node 

n in the CFG such that x and y are both LiveOut at n.

Representation: conflict/interference graph: 

• each virtual register represented by one node

• Interference between x and y: undirected edge between nodes x and y



Interference graph: optimization for MOVEs

t s (*move*)n1:

x  . . . s . . . (*use of s*)n2:

y  . . . t . . . (*use of t*)n3:

Virtual registers s and t

• are both live-out at n1

• hence interfere formally

• will hence be assigned 

different registers

s t

But: we’d like them to share a register, and to eliminate the move instruction!

Solution: treat move instructions differently during interference analysis

a c (*move*)n: and liveOut(n) = {b1, …, bk}, only add edges

for those bi that are different from c.

For

a bi



Graph coloring using Kempe’s heuristics (1879)

Observation: • suppose G has a node m with < K neighbors

• if G – {m} can be K-1 colored, G can be K-colored:

• m’s neighbors use at most K-1 colors in G - {m} 

• so can reinsert m into G and select a color

K = 6

remove a node 

of degree < 6 color the 

remaining graph

reinsert the node 

and select a color

 recursive (stack-based) algorithm



Optimistic coloring using Kempe

Build
construct 

interference graph



Optimistic coloring using Kempe

Build
construct 

interference graph
Simplify

• repeatedly remove nodes of degree < K

• push removed nodes on stack

• each removal reduces degree of other nodes!
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Optimistic coloring using Kempe

Build
construct 

interference graph
Simplify

• repeatedly remove nodes of degree < K

• push removed nodes on stack

• each removal reduces degree of other nodes!

S
pi

ll • simplify fails if all nodes have degree >= K

• select a node n for (potential) spilling

• remove n from G, and push n into onto stack

S
el

ec
t • starting from empty graph, successively pop nodes, select 

color, and add node back into graph

• when a potential spill node is popped:

1. all K neighbors have different color  actual spill; don’t 

assign color but continue selecting to identify other spills

2. the K neighbors use < K colors  use the free color -

spill did not need to be realized (“optimistic coloring”)



Optimistic coloring using Kempe

Build
construct 

interference graph
Simplify

• repeatedly remove nodes of degree < K

• push removed nodes on stack

• each removal reduces degree of other nodes!

S
pi

ll • simplify fails if all nodes have degree >= K

• select a node n for (potential) spilling

• remove n from G, and push n into onto stack

S
el

ec
t • starting from empty graph, successively pop nodes, select 

color, and add node back into graph

• when a potential spill node is popped:

1. all K neighbors have different color  actual spill; don’t 

assign color but continue selecting to identify other spills

2. the K neighbors use < K colors  use the free color -

spill did not need to be realized (“optimistic coloring”)

Start over
When all required spills have 

been identified

• rewrite program: realize spills

• recompute liveness – live 

ranges of spills typically short



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: c, g, h, f

 push g, h



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: c, f

 push g, h Next: push k, d, j, e, f, b, c



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: m

 push g, h, k, d, j, e, f, b, c Next: push m, pop m



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: 

 push g, h, k, d, j, e, f, b, c Next: pop c, b, f



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: 

 push g, h, k, d, j, e Next: pop e, j, d



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: 

 push g, h, k Next: pop k, h, g



Basic coloring: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move (relevant later)

interference

Nodes of degree < K: 

 Stack empty Done – no spilling needed



Register coalescing 

In particular: if source and dest of a move don’t interfere, coalescing 

allows one to eliminate the move instruction.

Nodes in the conflict graph can be coalesced, provided that they don’t interfere;

edges of coalesced node = union of edges associated with original nodes

c

b

a bca



Register coalescing 

In particular: if source and dest of a move don’t interfere, coalescing 

allows one to eliminate the move instruction.

Nodes in the conflict graph can be coalesced, provided that they don’t interfere;

edges of coalesced node = union of edges associated with original nodes

c

b

a bca

But: coalescing before coloring may make graph not colorable!

Example: is 2-colorable:

b

a

d

c

is not.

b

a

cdb

a

d

c

. But



Safe coalescing heuristics: Briggs

Coalesce nodes that don’t interfere, provided that the resulting merged node 

has less than K neighbors of degree ≥ K.

Don’t merge c with d, 

since deg(a)=deg(b) = 2 in
b

a

cd

Example:

b

a

d

c

.
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has less than K neighbors of degree ≥ K.

Don’t merge c with d, 

since deg(a)=deg(b) = 2 in
b

a

cd

Example:

b

a

d

c

.

Why is this safe?



Safe coalescing heuristics: Briggs

Coalesce nodes that don’t interfere, provided that the resulting merged node 

has less than K neighbors of degree ≥ K.

Don’t merge c with d, 

since deg(a)=deg(b) = 2 in
b

a

cd

Example:

b

a

d

c

.

Why is this safe? • after simplification, all nodes of degree < K have been 

eliminated



Safe coalescing heuristics: Briggs

Coalesce nodes that don’t interfere, provided that the resulting merged node 

has less than K neighbors of degree ≥ K.

Don’t merge c with d, 

since deg(a)=deg(b) = 2 in
b

a

cd

Example:

b

a

d

c

.

Why is this safe? • after simplification, all nodes of degree < K have been 

eliminated

• so only high-degree neighbors of merge remain



Safe coalescing heuristics: Briggs

Coalesce nodes that don’t interfere, provided that the resulting merged node 

has less than K neighbors of degree ≥ K.

Don’t merge c with d, 

since deg(a)=deg(b) = 2 in
b

a

cd

Example:

b

a

d

c

.

Why is this safe? • after simplification, all nodes of degree < K have been 

eliminated

• so only high-degree neighbors of merge remain

• if there are < K of such neighbors, the degree of the 

merge is < K, so we can simplify merge

Hence, merging does not render a colorable graph incolorable.



Safe coalescing heuristics: George

Coalesce noninterfering nodes x and y only if every neighbor t of x already 

interferes with y or is of degree < K.

Don’t merge c with d, since deg(a)= 2 

and a does not yet interfere with d. 

Similarly, don’t merge d with c, since . . .

Example:

b

a

d

c



Safe coalescing heuristics: George

Coalesce noninterfering nodes x and y only if every neighbor t of x already 

interferes with y or is of degree < K.

Don’t merge c with d, since deg(a)= 2 

and a does not yet interfere with d. 

Similarly, don’t merge d with c, since . . .

Example:

b

a

d

c

Why is this safe?



Safe coalescing heuristics: George

Coalesce noninterfering nodes x and y only if every neighbor t of x already 

interferes with y or is of degree < K.

Don’t merge c with d, since deg(a)= 2 

and a does not yet interfere with d. 

Similarly, don’t merge d with c, since . . .

Example:

b

a

d

c

Why is this safe? • let S be the set of neighbors of x in G that have degree < K



Safe coalescing heuristics: George

Coalesce noninterfering nodes x and y only if every neighbor t of x already 

interferes with y or is of degree < K.

Don’t merge c with d, since deg(a)= 2 

and a does not yet interfere with d. 

Similarly, don’t merge d with c, since . . .

Example:

b

a

d

c

Why is this safe? • let S be the set of neighbors of x in G that have degree < K

• if coalescing is not performed, all nodes in S simplify, 

leaving a reduced graph G1



Safe coalescing heuristics: George

Coalesce noninterfering nodes x and y only if every neighbor t of x already 

interferes with y or is of degree < K.

Don’t merge c with d, since deg(a)= 2 

and a does not yet interfere with d. 

Similarly, don’t merge d with c, since . . .

Example:

b

a

d

c

Why is this safe? • let S be the set of neighbors of x in G that have degree < K

• if coalescing is not performed, all nodes in S simplify, 

leaving a reduced graph G1

• if coalescing is performed, simplify also removes all nodes 

in S: each s є S is of degree < K or is already adjacent to 

both x and y in G, so still simplifies after merging of x and y



Safe coalescing heuristics: George

Coalesce noninterfering nodes x and y only if every neighbor t of x already 

interferes with y or is of degree < K.

Don’t merge c with d, since deg(a)= 2 

and a does not yet interfere with d. 

Similarly, don’t merge d with c, since . . .

Example:

b

a

d

c

Why is this safe? • let S be the set of neighbors of x in G that have degree < K

• if coalescing is not performed, all nodes in S simplify, 

leaving a reduced graph G1

• if coalescing is performed, simplify also removes all nodes 

in S: each s є S is of degree < K or is already adjacent to 

both x and y in G, so still simplifies after merging of x and y

• the resulting G2 is a subgraph of G1 (“merge” in G2

corresponds to y in G1), so if G1 can be colored, so can G2

Again, merging does not render a colorable graph incolorable.



Safe coalescing heuristics: Briggs, George

Both heuristics are conservative: 

• we may miss some opportunities to coalesce (HW: example?)

• specifically, we may fail to eliminate some move instructions

• but that’s preferable to not coalescing at all, which results in more spills; 

spills significantly more expensive (time: load+store versus move; space)



Safe coalescing heuristics: Briggs, George

Both heuristics are conservative: 

• we may miss some opportunities to coalesce (HW: example?)

• specifically, we may fail to eliminate some move instructions

• but that’s preferable to not coalescing at all, which results in more spills; 

spills significantly more expensive (time: load+store versus move; space)

 interleaving simplify with coalescing eliminates many moves, while still 

avoiding many spills. Thus, refine our allocation procedure:



Safe coalescing heuristics: Briggs, George

Both heuristics are conservative: 

• we may miss some opportunities to coalesce (HW: example?)

• specifically, we may fail to eliminate some move instructions

• but that’s preferable to not coalescing at all, which results in more spills; 

spills significantly more expensive (time: load+store versus move; space)

 interleaving simplify with coalescing eliminates many moves, while still 

avoiding many spills. Thus, refine our allocation procedure:

Build Simplify Coalesce

• construct interference graph

• mark nodes that are the src

or dest or a move

successively remove nodes that

• are of degree < K, and 

• are not move-related

• conservative: use Briggs or George

• simplify reduced many degrees, so many 

opportunities

• delete move instructions involved in coalescing

• correct “move-related” classification of merged 

node if necessary

• back to simplification!



Allocation with coalescing: freezing

Build Simplify Coalesce

NEW PHASE: 

• select a low-degree node n that is marked move-related

• mark it non-move-related

• “give up hope to ever coalesce it”

• also mark n’s move-partner non-move-related, unless it 

participates in some other move(s)

• back to simplify: at least the now unmarked nodes can be simplified

Freeze



Allocation with coalescing: completing the algorithm

Remaining phases as before:

Build Simplify Coalesce

Freeze

(Potential) spill

Actual spill / start over

Select
no actual spill

push potential spill node

graph empty

remember realization of spill
but keep selecting

no freezable node of 

low degree

simplify/coalesce 

exhausted

rewrite program, 

recompute interferences

pop node, 

select color

push

low-degree 

nodes exhausted



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move

interference

Non-marked nodes of degree < K: g, h, f

 push g, h, k



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

d

h

g

e

f

c

m

move

interference

Non-marked nodes of degree < K: f

 push g, h, k

Next: coalesce c & d

could still simplify f instead!

George: all neighbors of c already interfere with d

Briggs: merged node has < K neighbors of degree ≥ K



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j b

c&d

h

g

e

f

m

move

interference

Non-marked nodes of degree < K: f

 push g, h, k

Next: coalesce j & b

could still simplify f instead!

Briggs: merged node has < K neighbors of degree ≥ K



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j&b

c&d

h

g

e

f

m

move

interference

Non-marked nodes of degree < K: f, e, c&d

 push g, h, k

Next: push c&d, j&b, f, m, e

pop e



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j&b

c&d

h

g

e

f

m

move

interference

Non-marked nodes of degree < K:

 push g, h, k, c&d, j&b, f, m

Next: pop m, f, j&b, c&d



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j&b

c&d

h

g

e

f

m

move

interference

Non-marked nodes of degree < K: 

 push g, h, k

Next: pop k, h, g



Coloring with coalescing: example (K = 4)

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

b := M [ f ]

c := e + 8

d := c

k := m + 4

j := b

// liveOut d k j

k
j&b

c&d

h

g

e

f

m

move

interference

Done



Spilling heuristics

• splits single large liveness range of 

m into two short liveness ranges

• eliminates interference c  m

SPILL m

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

M [ mloc ] := m

b := M [ f ]

c := e + 8

d := c

m := M [ mloc ]

k := m + 4

j := b

// liveOut d k j
General heuristics: spill nodes that

• have high degree, but few uses

• particularly if the live-range is long but sparse



Spilling heuristics

• splits single large liveness range of 

m into two short liveness ranges

• eliminates interference c  m

SPILL m

// liveIn: k, j

g := M [ j+12 ]

h := k – 1

f = g * h

e := M [ j + 8 ]

m := M [ j + 16 ]

M [ mloc ] := m

b := M [ f ]

c := e + 8

d := c

m := M [ mloc ]

k := m + 4

j := b

// liveOut d k j



Spilling heuristics

Naïve spilling: when rewriting program, undo all register coalescing

Improvement: remember all coalescing done before the first 

potential spill was discovered – they will tend to be rediscovered --

but undo the later coalescings.



Spilling heuristics

Naïve spilling: when rewriting program, undo all register coalescing

Improvement: remember all coalescing done before the first 

potential spill was discovered – they will tend to be rediscovered --

but undo the later coalescings.

Coalescing spills: • many spill locations  large stack frames

• don’t need to keep spill locations apart if their virtual 

registers don’t interfere!

• further benefit: eliminate spill-to-spill-moves:

a b when both a and b are spilled:

t  M [bloc]; M[aloc]  t (typo in MCIL here – see errata list!)

Hence, can use coloring to minimize spill locations:

• infinitely many colors: no bound on size of frame

• liveness info yields interference between spilled nodes

• first, coalesce all spill nodes related by moves

• then, simplify and select (try to reuse colors)

• resulting # colors is # spill locations 

All done during “Start 

Over”, before spill code 

is generated and new 

register interference is 

computed



Precolored temporaries / nodes

• some temporaries correspond directly to machine registers: stack / 

frame pointer, standard argument registers 1 & 2, …

• these special temporaries implicitly interfere with each other

• but: ordinary temporaries can share color with precolored node 

(see example below)



Precolored temporaries / nodes

• some temporaries correspond directly to machine registers: stack / 

frame pointer, standard argument registers 1 & 2, …

• these special temporaries implicitly interfere with each other

• but: ordinary temporaries can share color with precolored node 

(see example below)

K-register machine:

• introduce precolored K nodes, all interfering with each other

• liveness range of special-purpose registers (frame pointer etc) 

interfere with all ordinary temporaries that are live

• general-purpose registers have no additional interferences

• precolored nodes can’t be simplified (they already have a color!), 

and can’t be spilled (they are registers!)

• hence, consider them to be of infinite degree and start selection 

phase not from empty graph but graph of precolored nodes

• to keep live ranges of precolored nodes short, front-end can “copy 

them away”, to freshly introduced temps 



“Copying away” precolored temporaries

• suppose register r7 is callee-save: 

• considering function entry as definition of r7, and 

function exit as use ensures it’s live throughout the 

body, so it will be preserved

• but: we don’t want to block the callee-save-

register color for the entire body

entry: def(r7)

:

exit: use(r7)



“Copying away” precolored temporaries

• suppose register r7 is callee-save: 

• considering function entry as definition of r7, and 

function exit as use ensures it’s live throughout the 

body, so it will be preserved

• but: we don’t want to block the callee-save-

register color for the entire body

• so: introduce a new temporary t and insert moves

• if register pressure is low, allocator will coalesce 

and eliminate moves

• if register pressure is high, allocator will spill

entry: def(r7)

:

exit: use(r7)

entry: def(r7)

t  r7

:

r7  t

exit: use(r7)



“Copying away” precolored temporaries

• suppose register r7 is callee-save: 

• considering function entry as definition of r7, and 

function exit as use ensures it’s live throughout the 

body, so it will be preserved

• but: we don’t want to block the callee-save-

register color for the entire body

• so: introduce a new temporary t and insert moves

• if register pressure is low, allocator will coalesce 

and eliminate moves

• if register pressure is high, allocator will spill

entry: def(r7)

:

exit: use(r7)

entry: def(r7)

t  r7

:

r7  t

exit: use(r7)

Note: the thus introduced temps t (one for each 

callee-save register) interfere with each other, 

with “later” other callee-save regs, and with 

most variables defined + used in the body, and 

are hence of “high degree and low #uses”.

entry: def(r7, r8)

t  r7

u r8

:

r8  u

r7  t

exit: use(r7, r8)

t u

r8 r7



Liveness-across-call and caller/callee-save preference

:

x := 5

y := x + 1

z := f ()

return z + y

Body of g():

Temporary x is not live across the call to f

• allocating x to a callee-save register r will force body 

of f to store r away to some t (previous slide), and 

restore r before returning

• but caller does not need x



Liveness-across-call and caller/callee-save preference

:

x := 5

y := x + 1

z := f ()

return z + y

Body of g():

Temporary x is not live across the call to f

• allocating x to a callee-save register r will force body 

of f to store r away to some t (previous slide), and 

restore r before returning

• but caller does not need x

• prefer allocation of x to caller-save register s:

• callee f is free to overwrite s

• that’s ok: x is not used after function return

• caller even does not even need to store s away 

prior to call – and knows this (liveness info)



Liveness-across-call and caller/callee-save preference

:

x := 5

y := x + 1

z := f ()

return z + y

Body of g():

Temporary x is not live across the call to f

• allocating x to a callee-save register r will force body 

of f to store r away to some t (previous slide), and 

restore r before returning

• but caller does not need x

• prefer allocation of x to caller-save register s:

• callee f is free to overwrite s

• that’s ok: x is not used after function return

• caller even does not even need to store s away 

prior to call – and knows this (liveness info)

Temps not live across calls should be allocated to caller-save registers.



:

x := 5

y := x + 1

z := f ()

return z + y

Body of g():

Liveness-across-call and caller/callee-save preference

Temporary y is live across the call to f

• allocating y to a caller-save register s would mean 

that f is free to overwrite s

• but caller does need y/s after function return

• so y/s would additionally need to be spilled / 

copied away prior to call

• we don’t want to spill all variables that are live 

across calls!



:

x := 5

y := x + 1

z := f ()

return z + y

Body of g():

Liveness-across-call and caller/callee-save preference

Temporary y is live across the call to f

• allocating y to a caller-save register s would mean 

that f is free to overwrite s

• but caller does need y/s after function return

• so y/s would additionally need to be spilled / 

copied away prior to call

• we don’t want to spill all variables that are live 

across calls!

• prefer allocation of y to callee-save register r:

• callee f copies r away to some t (coalesce if 

possible) and will restore r prior to return

• no additional work needed on caller side



:

x := 5

y := x + 1

z := f ()

return z + y

Body of g():

Liveness-across-call and caller/callee-save preference

Temporary y is live across the call to f

• allocating y to a caller-save register s would mean 

that f is free to overwrite s

• but caller does need y/s after function return

• so y/s would additionally need to be spilled / 

copied away prior to call

• we don’t want to spill all variables that are live 

across calls!

• prefer allocation of y to callee-save register r:

• callee f copies r away to some t (coalesce if 

possible) and will restore r prior to return

• no additional work needed on caller side

Temps live across calls should be allocated to callee-save registers.



Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

Temps not live across calls should be allocated to caller-save registers.

How can we nudge the allocator to do this? 



Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

Temps not live across calls should be allocated to caller-save registers.

How can we nudge the allocator to do this? 

In CALL instruction, understand all N caller-save 

registers to be defined/live-out. They interfere with each 

other

s1 s2

s3s4

sN



Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

Temps not live across calls should be allocated to caller-save registers.

How can we nudge the allocator to do this? 

In CALL instruction, understand all N caller-save 

registers to be defined/live-out. They interfere with each 

other but not with x, so a good allocator will tend to 

assign x to the precolor of one of the si.

s1 s2

s3s4

sNx



Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this? 

In CALL instruction, understand all N caller-save 

registers to be defined/live-out. They interfere with each 

other and also with y. 

s1 s2

s3s4

sNx y



Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this? 

In CALL instruction, understand all N caller-save 

registers to be defined/live-out. They interfere with each 

other and also with y. But y also interferes with the ti

created by the front-end in the body of g. 

s1 s2

s3s4

sNx y

t1

tK

:



Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this? 

In CALL instruction, understand all N caller-save 

registers to be defined/live-out. They interfere with each 

other and also with y. But y also interferes with the ti

created by the front-end in the body of g. So a spill is 

likely. Since the ti are “high degree, low use”, they are 

more likely to be selected for spill. So, the color of one 

callee-save registers is available for y.

s1 s2

s3s4

sNx y

t1

tK

:



Register allocation for expression trees

Can avoid liveness calculation, interference graph construction, coloring.

Flashback to instruction selection: “tiling”, ie covering the tree 

with patterns corresponding to machine instructions.

In IR phase, had suggested 

use of separate (virtual) 

registers for each tile.

Clearly, can do better…



Register allocation for expression trees

Algorithm 1:

• simple postorder traversal

• can be combined with 

maximal munch (optimal but 

not optimum)

r1

r2

r2

r1

r1

r2

r1

r2

r2

r1 r2

r1

r1

r2

r2

r1 r2

r1

r2

r2



Register allocation for expression trees

Algorithm 2: 

• dynamic programming

• label each tile with number of registers needed for its evaluation

• when visiting node u with children uleft uright, with needs nl and nr, respectively:
• evaluating left child; hold result while evaluating right child: cost = max(uleft, 1 + uright)

• evaluating right child; hold result while evaluating left child: cost = max(1 + uleft, uright)

• choose cheaper evaluation order


