Topic 12: Register Allocation

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Structure of backend

1

Control Flow Analysis Datatlow Analysis

Register allocation

assigns machine registers (finite supply!) to virtual registers
based on liveness analysis: interference graph
primary approach: graph coloring
spilling
 needed in case of insufficient supply of machine registers

* idea: hold values in memory (stack frame)
« transfer to/from registers to perform arithmetic ops, conditional branches, ...
architecture-specific requirements:

* caller/callee-save
« floating point vs integer, ...

Optimization —=|Register Allocation——=| Scheduling ——=

Recap: interference graph

Liveness conflicts: virtual registers x and y interfere if there is a node
n in the CFG such that x and y are both LiveOut at n.

Representation: conflict/interference graph:
* each virtual register represented by one node
* Interference between x and y: undirected edge between nodes x and y

L[=0 Node | DEF|OUT IN

.. ﬂzflﬂ | 1 rl [rl,r3] 13 o r3
! 2 2 | 12.03]|rl.3

3: 13=r3+12
" 13 (1213|1213
rl |[rl.r3]r2.13

4: rl1=12%2
- |rl, 3 rl.r3
- r3

v
5:1 branchrl <10,L1

<

return r3

N D B W

Interference graph: optimization for MOVEsS

n;:|t&s (*move*)

v

n,: |x €< ...s...(*use of s¥)

v

n;: |y < ...t...("use of t*)

Virtual registers s and t
* are both live-out at n,
* hence interfere formally

OO

* will hence be assigned
different registers

But: we'd like them to share a register, and to eliminate the move instruction!

Solution: treat move instructions differently during interference analysis

Forn:|a € ¢ (*move*) | and liveOut(n) = {b,, ..., b}, only add edges

@ for those b, that are different from c.

Graph coloring using Kempe's heuristics (1879)

Observation: © suppose G has a node m with <K neighbors
 if G—{m} can be K-1 colored, G can be K-colored:
* m’s neighbors use at most K-1 colors in G - {m}
* 50 can reinsert m into G and select a color

°
remove a node °]
of degree <6 AN \\Olzthe
°

remaiNng graph

O
reinsert the node o |
and select a color N\

O

=>» recursive (stack-based) algorithm

Optimistic coloring using Kempe

. construct
BU | |d interference graph

Optimistic coloring using Kempe

Optimistic coloring using Kempe

: construct | '
BU | |d interference graph Slm pl Ify
» repeatedly remove nodes of degree <K
» push removed nodes on stack

» each removal reduces degree of other nodes!

| |

— - simplify fails if all nodes have degree >= K
O -+ selectanode n for (potential) spilling
/) - remove nfrom G, and push n into onto stack

Optimistic coloring using Kempe

: construct | |
BU | |d interference graph Slmpl Ify
 repeatedly remove nodes of degree < K
» push removed nodes on stack

» each removal reduces degree of other nodes!

| |

— - simplify fails if all nodes have degree >= K
O -+ selectanode n for (potential) spilling
/) - removenfrom G, and push n into onto stack

Optimistic coloring using Kempe

. construct I I
BU | |d interference graph Slmpl Ify
 repeatedly remove nodes of degree < K
T » push removed nodes on stack

» each removal reduces degree of other nodes!
Start over I l
When all required spills have
been identified - — - simplify fails if all nodes have degree >= K
* rewrite program: realize spills O« selectanode n for (potential) spilling
* recompute liveness — live /) - removenfrom G, and push n into onto stack
ranges of spills typically short

A

Basic coloring: example (K = 4)

[l liveln: K, j
g:=M[j+12]
h:=k-1
f=g*h
e=M[j+8]
m:=M[]+16]
b:=M[f]
c:=e+8

d:=

=D
/[liveOut d k

move (relevant later)
interference

Basic coloring: example (K = 4)

[liveln: K, |
g:=M[j+12]
h:i=k-1
f=g*h
e=M[]+8]
m:=M[]+16]
b:=M[f]
c:=e+8

d:=

| =D
/[liveOut d k |

Nodes of degree <K: ¢, g, h, f

> pushg,h

move (relevant later)
interference

Basic coloring: example (K = 4)

[liveln: K, |
g:=M[j+12]
h:i=k-1
f=g*h
e=M[]+8]
m:=M[]+16]
b:=M[f]
c=e+8

d:=

| =D
/[liveOut d k |

Nodes of degree <K: ¢, f

> pushg,h

----------------- move (relevant later)
interference

Next: push k, d,j, e, f, b, C

Basic coloring: example (K = 4)

[liveln: k, |
g:=M[j+12]
hi=k-1
f=g*h

e =M[j+8]
m:=M[j+16]
b:=M[f]
c=e+8
d:=c
kK:=m+4
J:=Db

/[liveOut d k |

Nodes of degree <K: m
> pushg,hkdjefbc

----------------- move (relevant later)
interference

Next: push m, pop m

Basic coloring: example (K = 4)

[liveln: K, |
g:=M[+12]
hi=k-1
f=g*h

e =MJ[j+8]
m:=M[j+16]
b:=M[f]
c=e+8
d:=c
K:=m+4
J=Db

/[liveOut d k |

Nodes of degree < K:
> pushg,hkdjefbc

----------------- move (relevant later)

interference

Next: pop ¢, 1,

Basic coloring: example (K = 4)

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g*h

e =MJ[j+8]
m:=M[j+16]
b:=M[f]
c=e+8
d:=c
K:=m+4
J:=Db

/[liveOut d k |

Nodes of degree < K:
> pushg,hkd,je

----------------- move (relevant later)

Next: pop ¢, |,

interference

Basic coloring: example (K = 4)

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g*h

e =M[j+8]
m:=M[]+10]
b:=M[f]
c=e+8

d:=

| =D
/[liveOut d k |

Nodes of degree < K:
> pushg, h,k

----------------- move (relevant later)

Next: pop k

interference

Basic coloring: example (K = 4)

[liveln: K, |
g:=M[j+12]
h:i=k-1
f=g*h
e=M[]+8]
m:=M[]+16]
b:=M[f]
c=e+8

d:=

| =D
/[liveOut d k

Nodes of degree < K:
> Stack empty

----------------- move (relevant later)
interference

Done - no spilling needed

Register coalescing

Nodes in the conflict graph can be coalesced, provided that they don't interfere;
edges of coalesced node = union of edges associated with original nodes

T

In particular: if source and dest of a move don't interfere, coalescing
allows one to eliminate the move instruction.

Register coalescing

Nodes in the conflict graph can be coalesced, provided that they don't interfere;
edges of coalesced node = union of edges associated with original nodes

T

In particular: if source and dest of a move don't interfere, coalescing
allows one to eliminate the move instruction.

But: coalescing before coloring may make graph not colorable!

oiollc - Mo
Example: is 2-colorable: . But ’ s not.
O30 Oz0JOZ®

Safe coalescing heuristics: Briggs

Coalesce nodes that don't interfere, provided that the resulting merged node
has less than K neighbors of degree = K.

: (2,
Q_@ Don’t merge ¢ with d,

since deg(a)=deg(b) =2 in ’
050 (©

Example:

Safe coalescing heuristics: Briggs

Coalesce nodes that don't interfere, provided that the resulting merged node
has less than K neighbors of degree = K.

: (2,
Q_@ Don’t merge ¢ with d,

since deg(a)=deg(b) =2 in ’
050 (©

Why is this safe?

Example:

Safe coalescing heuristics: Briggs

Coalesce nodes that don't interfere, provided that the resulting merged node
has less than K neighbors of degree = K.

: (2,
Q_@ Don’t merge ¢ with d,

since deg(a)=deg(b) =2in ’
050 O

Why is this safe? « after simplification, all nodes of degree < K have been
eliminated

Example:

Safe coalescing heuristics: Briggs

Coalesce nodes that don't interfere, provided that the resulting merged node
has less than K neighbors of degree = K.

: (2
O_@ Don’t merge ¢ with d,

since deg(a)=deg(b) =2in '
020 O

Why is this safe? « after simplification, all nodes of degree < K have been
eliminated
* 50 only high-degree neighbors of merge remain

Example:

Safe coalescing heuristics: Briggs

Coalesce nodes that don't interfere, provided that the resulting merged node
has less than K neighbors of degree = K.

: (2,
O_@ Don’t merge ¢ with d,

since deg(a)=deg(b) =2in ’
020 O

Why is this safe? « after simplification, all nodes of degree < K have been
eliminated
* 50 only high-degree neighbors of merge remain
« if there are < K of such neighbors, the degree of the
merge is < K, so we can simplify merge

Example:

Hence, merging does not render a colorable graph incolorable.

Safe coalescing heuristics: George

Coalesce noninterfering nodes x and v only if every neighbor t of x already
interferes with v or is of degree < K.

@_@ Don’t merge ¢ with «, since deg(a)= 2

Example: and a does not yet interfere with .

@_@ Similarly, don’t merge < with -, since . . .

Safe coalescing heuristics: George

Coalesce noninterfering nodes x and v only if every neighbor t of x already
interferes with v or is of degree < K.

@_@ Don’t merge ¢ with «, since deg(a)= 2

Example: and a does not yet interfere with .

@_@ Similarly, don’t merge < with -, since . . .

Why is this safe?

Safe coalescing heuristics: George

Coalesce noninterfering nodes x and v only if every neighbor t of x already
interferes with v or is of degree < K.

@_@ Don’t merge ¢ with «, since deg(a)= 2

Example: and a does not yet interfere with .

@_@ Similarly, don’t merge < with -, since . . .

Why is this safe? « let S be the set of neighbors of x in G that have degree <K

Safe coalescing heuristics: George

Coalesce noninterfering nodes x and v only if every neighbor t of x already
interferes with v or is of degree < K.

@_@ Don’t merge ¢ with «, since deg(a)= 2

Example: and a does not yet interfere with .

@_@ Similarly, don’t merge < with -, since . . .

Why is this safe? « let S be the set of neighbors of x in G that have degree <K
« if coalescing is not performed, all nodes in S simplify,
leaving a reduced graph G,

Safe coalescing heuristics: George

Coalesce noninterfering nodes x and v only if every neighbor t of x already
interferes with v or is of degree < K.

G}@ Don’t merge ¢ with «, since deg(a)= 2

Example: and a does not yet interfere with .

@_@ Similarly, don’t merge < with -, since . . .

Why is this safe? « let S be the set of neighbors of x in G that have degree <K
« if coalescing is not performed, all nodes in S simplify,
leaving a reduced graph G,
« if coalescing is performed, simplify also removes all nodes
in S: each s € S is of degree < K or is already adjacent to
both x and v in G, so still simplifies after merging of x and

Safe coalescing heuristics: George

Coalesce noninterfering nodes x and v only if every neighbor t of x already
interferes with v or is of degree < K.

G}@ Don’t merge ¢ with «, since deg(a)= 2

Example: and a does not yet interfere with .

@_@ Similarly, don’t merge < with -, since . . .

Why is this safe? « let S be the set of neighbors of x in G that have degree <K

« if coalescing is not performed, all nodes in S simplify,
leaving a reduced graph G,

« if coalescing is performed, simplify also removes all nodes
in S: each s € S is of degree < K or is already adjacent to
both x and v in G, so still simplifies after merging of x and

» the resulting G, is a subgraph of G, (‘merge” in G,
corresponds to v in G,), so if G, can be colored, so can G,

Again, merging does not render a colorable graph incolorable.

Safe coalescing heuristics: Briggs, George

Both heuristics are conservative:

* We may miss some opportunities to coalesce (HW: example?)

« specifically, we may fail to eliminate some move instructions

 Dbut that’s preferable to not coalescing at all, which results in more spills;
spills significantly more expensive (time: load+store versus move; space)

Safe coalescing heuristics: Briggs, George

Both heuristics are conservative:

* We may miss some opportunities to coalesce (HW: example?)

« specifically, we may fail to eliminate some move instructions

 Dbut that’s preferable to not coalescing at all, which results in more spills;
spills significantly more expensive (time: load+store versus move; space)

—> interleaving simplify with coalescing eliminates many moves, while still
avoiding many spills. Thus, refine our allocation procedure:

Safe coalescing heuristics: Briggs, George

Both heuristics are conservative:

* We may miss some opportunities to coalesce (HW: example?)

« specifically, we may fail to eliminate some move instructions

 Dbut that’s preferable to not coalescing at all, which results in more spills;
spills significantly more expensive (time: load+store versus move; space)

—> interleaving simplify with coalescing eliminates many moves, while still
avoiding many spills. Thus, refine our allocation procedure:

 \ /\
—+{ Build ——{ Simplify ———{Coalesce |------

 construct interference graph
* mark nodes that are the src
or dest or a move

successively remove nodes that
» are of degree <K, and
* are not move-related

Allocation with coalescing: freezing

A\ TN

Allocation with coalescing: completing the algorithm

Remaining phases as bhefore:

¥\ /\ simplify/coalesce
. . . exhausted
—> Build Simplify P p—

‘rewrite program, nodes exhausted

recompute interferences

Actual spill / start over |

push potential spill node

no freezable node of
low degree

remember realization of spill _
but keep selecting

(Potential) spill

no actual spill graph empty

\N

pop node,
select color

Coloring with coalescing: example (K = 4)

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g*h

e =M[j+8]
m:=M[]+10]
b:=M[f]
c=e+8

d:=

| =D
/[liveOut d k |

Non-marked nodes of degree <K: g, h, f
> pushg, hk

Coloring with coalescing: example (K = 4)

[liveln: k, |
g:=M[j+12]
h:=k-1
f=g*h
e=M[j+8]
m:=M[]+16]
b:=M[f]
c:=e+8
d:=
ki=m+4
=

/[liveOut d k |

interference

could still simplify f instead!

Non-marked nodes of degree < K: f Next: coalesce ¢ & d
-> pushg, h,k George: all neighbors of ¢ already interfere with d

Briggs: merged node has < K neighbors of degree =K

Coloring with coalescing: example (K = 4)

[liveln: K, |
g:=M[j+12]
h:=k-1
f=g*h
e=M[j+8]
m:=M[]+16]
b:=M[f]
c:=e+8
d:=
ki=m+4
=

/[liveOut d k |

Non-marked nodes of degree < K: f
> pushg, h,k

interference

could still simplify f instead!
Next: coalesce j & b

Briggs: merged node has < K neighbors of degree =K

Coloring with coalescing: example (K = 4)

[liveln: K, |
g:=M[j+12]
h:i=k-1
f=g*h
e=M[]+8]
m:=M[]+16]
b:=M[f]
c:=e+8

d:=

| =D
/[liveOut d k |

Non-marked nodes of degree < K: f, e, c&d
- pushg, h,k

interference

Next: push c&d, j&b, f, m, e
Pop €

Coloring with coalescing: example (K = 4)

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g*h

e =MJ[j+8]
m:=M[j+16]
b:=M[f]
c=e+8
d:=c
K:=m+4
J=Db

/[liveOut d k |

Non-marked nodes of degree < K: Next: pop m, f, j&b, c&d
> push g, h, k, c&d, j&b, f, m

Coloring with coalescing: example (K = 4)

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g*h

e =M[j+8]
m:=M[]+10]
b:=M[f]
c=e+8

d:=

| =D
/[liveOut d k |

Non-marked nodes of degree < K:
> pushg, h,k

interference

Next: pop k, h, ¢

Coloring with coalescing: example (K = 4)

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g*h

e =M[j+8]
m:=M[]+10]
b:=M[f]
c=e+8

d:=

| =D
Il liveOut d K |

Done

interference

Spilling heuristics

[liveln: K, |

g:=M[j+12]

h:=k-1

f=g™*h

e=M[|+8]

m:=M[j+16]

M [mIoc] =m

b:=M[f]

c=e+8

d:=c

m:=M[mg] * splits single large liveness range of
k:=m+4 SPILL m m into

J 5 b | * eliminates interference
MiveQut d k| General heuristics: spill nodes that

* have high degree, but few uses
* particularly if the live-range is long but sparse

Spilling heuristics

[liveln: K, |
g:=M[j+12]
hi=k-1
f=g™*h
e=M[]j+8]
m:=M[]+106]
M[mg,]:=m
b:=M[f]
c=e+8
d:=c
m:=M[mg] * splits single large liveness range of
ki=m+4 SPILL m m into

J=b e eliminates interference
/[liveOut d k j

Spilling heuristics

Naive spilling: when rewriting program, undo all register coalescing
Improvement: remember all coalescing done before the first
potential spill was discovered — they will tend to be rediscovered --
but undo the later coalescings.

Spilling heuristics

Naive spilling: when rewriting program, undo all register coalescing
Improvement: remember all coalescing done before the first
potential spill was discovered — they will tend to be rediscovered --
but undo the later coalescings.

Coalescing spills: = many spill locations = large stack frames
 don'’t need to keep spill locations apart if their virtual
registers don't interfere!
* further benefit: eliminate spill-to-spill-moves:
a €b when both a and b are spilled:
t & Mib.J; Ma,.] € t(typoin MCIL here - see errata list!)
o Hence, can use coloring to minimize spill locations:
All done during “Start o g :
Over’, before spill code * INfinitely many colors: no bound on size of frame
is generated andnew * liveness info yields interference between spilled nodes
register interference is o f; :
computec first, cqalespe all spill nodes related by moves
« then, simplify and select (try to reuse colors)

* resulting # colors is # spill locations

Precolored temporaries / nodes

 some temporaries correspond directly to machine registers: stack /
frame pointer, standard argument registers 1 & 2, ...

« these special temporaries implicitly interfere with each other

 but: ordinary temporaries can share color with precolored node
(see example below)

Precolored temporaries / nodes

 some temporaries correspond directly to machine registers: stack /
frame pointer, standard argument registers 1 & 2, ...

« these special temporaries implicitly interfere with each other

 but: ordinary temporaries can share color with precolored node
(see example below)

K-register machine:

« introduce precolored K nodes, all interfering with each other

* liveness range of special-purpose registers (frame pointer etc)
interfere with all ordinary temporaries that are live

* general-purpose registers have no additional interferences

 precolored nodes can't be simplified (they already have a color!),
and can't be spilled (they are registers!)

 hence, consider them to be of infinite degree and start selection
phase not from empty graph but graph of precolored nodes

« to keep live ranges of precolored nodes short, front-end can “copy
them away”, to freshly introduced temps

“Copying away” precolored temporaries

* suppose register r7 is callee-save: entry: def(r7)
« considering function entry as definition of r7, and :
function exit as use ensures it’s live throughout the | exit: use(r7)

body, so it will be preserved
* but: we don't want to block the callee-save-
register color for the entire body

“Copying away” precolored temporaries

* suppose register r7 is callee-save:

considering function entry as definition of r7, and
function exit as use ensures it's live throughout the
body, so it will be preserved

but: we don't want to block the callee-save-
register color for the entire body

so: introduce a new temporary t and insert

if register pressure is low, allocator will coalesce
and eliminate moves

If register pressure is high, allocator will spill

entry: def(r7)

exit: use(r7)

entry: def(r7)

t

exit: use(r7)

t

“Copying away” precolored temporaries

* suppose register r7 is callee-save:

* considering function entry as definition of r7, and
function exit as use ensures it's live throughout the
body, so it will be preserved

* but: we don't want to block the callee-save-
register color for the entire body

* s0: introduce a new temporary t and insert

* if register pressure is low, allocator will coalesce
and eliminate moves

* if register pressure is high, allocator will spill

entry: def(r7)

exit: use(r7)

entry: def(r7)
t

t
exit: use(r7)

Note: the thus introduced temps t (one for each :
callee-save register) interfere with each other, J

entry: def(r7, r8)

t—u

with “later” other callee-save regs, and with
most variables defined + used in the body, and
are hence of “high degree and low #uses”.

u
t
exit: use(r7, r8)

Liveness-across-call and caller/callee-save preference

Temporary x is not live across the call to f

« allocating x to a callee-save register r will force body

Body of g(): of to store r away to some (previous slide), and
restore r before returning

* but caller does not need x

X:=5

yi=x+1
z:=1()

returnz +y

Liveness-across-call and caller/callee-save preference

Temporary x is not live across the call to f

Body of g():

X =93
yi=x+1
z:=1()
returnz +y

« allocating x to a callee-save register r will force body
of f to store r away to some t (previous slide), and
restore r before returning

* but caller does not need x

* prefer allocation of x to caller-save register s:

* callee fis free to overwrite

» that's ok: x is not used after function return

» caller even does not even need to store = away
prior to call — and knows this (liveness info)

Liveness-across-call and caller/callee-save preference

Temporary x is not live across the call to f

Body of g():

X:=95
yi=x+1
z:=1()
returnz +vy

« allocating x to a callee-save register r will force body
of f to store r away to some t (previous slide), and
restore r before returning

* but caller does not need x

* prefer allocation of x to caller-save register s:

« callee fis free to overwrite

« that's ok: x is not used after function return

« caller even does not even need to store < away
prior to call — and knows this (liveness info)

Liveness-across-call and caller/callee-save preference

Temporary v is live across the call to f

Body of g():

X =93
yi=x+1
z:=1()
returnz +y

allocating vy to a caller-save register = would mean
that f is free to overwrite

but caller does need y/= after function return

so y/= would additionally need to be spilled /
copied away prior to call

we don’t want to spill all variables that are live
across calls!

Liveness-across-call and caller/callee-save preference

Temporary v is live across the call to f

Body of g():

X =93
yi=x+1
z:=1()
returnz +y

« allocating y to a caller-save register = would mean
that f is free to overwrite
* but caller does need y/< after function return
50 y/= would additionally need to be spilled /
copied away prior to call
« we don't want to spill all variables that are live
across calls!
* prefer allocation of y to callee-save register r:
« callee f copies r away to some t (coalesce if
possible) and will restore r prior to return
* no additional work needed on caller side

Liveness-across-call and caller/callee-save preference

Temporary v is live across the call to f

Body of g():

X =93
yi=x+1
z:=1()
returnz +y

» allocating vy to a caller-save register = would mean
that f is free to overwrite
* but caller does need y/= after function return
* 50 y/= would additionally need to be spilled /
copied away prior to call
« we don't want to spill all variables that are live
across calls!
* prefer allocation of y to callee-save register r:
« callee f copies r away to some t (coalesce if
possible) and will restore r prior to return
* no additional work needed on caller side

Temps live across calls should be allocated to callee-save registers.

Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this? Body of g():

X:=95
y=x+1
z:=f()
returnz +vy

Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this? Body of g():
In CALL instruction, understand all :
to be defined/live-out. They interfere with X:=9
y=x+1
z:=f()

® ® -
()
(&)

Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this? Body of g():
In CALL instruction, understand all :
to be defined/live-out. They interfere with X:=5
but not with x, so a good allocator will tend to y=x+1
assign x to the precolor of one of the <. z:=f()

® ® -
® &
(&)

Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this?

Body of g():
In CALL instruction, understand all

to be defined/live-out. They interfere with '
: X:=95
and also with y. yiEx4

z:=f()
returnz +vy

1

Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this?

Body of g():
In CALL instruction, understand all ,
to be defined/live-out. They interfere with y =5
and also with y. But y also interferes with the t, =X+
created by the front-end in the body of g. 2:=1()
returnz +vy

® ®
® &
OO,

Liveness-across-call and caller/callee-save preference

Temps live across calls should be allocated to callee-save registers.

How can we nudge the allocator to do this?
Body of g():
In CALL instruction, understand all ,
to be defined/live-out. They interfere with x =5
and also with y. But y also interferes with the t; V=X
created by the front-end in the body of g. So a spill is
likely. Since the t. are “high d I ", th z:=1)
Ikely. Since the t; are “high degree, low use’, they are return z +

more likely to be selected for spill. So, the color of one
callee-save registers is available fory.

® ®
® &
OO,

Register allocation for expression trees

Can avoid liveness calculation, interference graph construction, coloring.

Flashback to instruction selection: “tiling”, ie covering the tree
with patterns corresponding to machine instructions.

r1

|
qﬁus
TEMP CONST

FP offset-a

MOVE

MEM

rd | rrus

TEMP

temp-i

PLUS

MULT TEMP

r3

CONST

FP

CONST

offset-x

4

r2

rs

In IR phase, had suggested
use of separate (virtual)
registers for each tile.

Clearly, can do better...

Register allocation for expression trees

r1

MCOVE

MEM

r4

PLUS

PLUS

FP offset-a

TEMP

Iﬁﬁi CONST temp-i

MULT

CONST

PLUS

TEMP CONST

FP offset-x

r3

r2

]

Algorithm 1:

simple postorder traversal
can be combined with
maximal munch (optimal but

not optimum)

R
'\

| r2

/7 N\
r1/ \r2

| r2

r1/ \r2

| r2

7N

|
VS
r1/ \r2

| r2

| r1
R
r1/ \r2

| r2

Register allocation for expression trees

MOVE
MEM MEM
r1 rd | srus PLUS
MEM wurT | |TEMP coNsT
E{!.!US TEMP CONST FP offset-x
TEIII:P-CGlIST temp-i 4)
F|I’ .:.rrs|et-a r3 r2

Algorithm 2:
* dynamic programming
* label each tile with number of registers needed for its evaluation

* when visiting node u with children uy U, With needs n, and n;, respectively:
* evaluating left child; hold result while evaluating right child: cost = max(Uyeg, 1 + Uyigny)

* evaluating right child; hold result while evaluating left child: cost = max(1 + Uy, Uigny)
» choose cheaper evaluation order

