Topic 9:

Control Flow

COS 320

Compiling Techniques

Princeton University
Spring 2016
Lennart Beringer

The Front End

Stream of Abstract : : Pseudo-
Source Tokens Syntax Tree | Semantic | IR Trees Canon- IR Trees [[nstruction| Assembly
— Lexer = Parser - . - . - .
Analysis 1calizer Selection
Target
= Back End——
The Front End:

1. assumes the presence of an mfinite number of registers to hold temporary variables.

2. mtroduces methiciencies 1n the source to IR translation.

3. does a direct translation of programmer’s code.

4. does not create pseudo-assembly tuned to the target architecture.

e Not scheduled for machines with non-unait latency.

e Not scheduled for wide-1ssue machines.

The Back End

The Back End:

1. Maps infinite number of virtual registers to finite number of real registers — register
allocation

2. Removes inefficiencies introduced by front-end — optimizer
3. Removes 1nefficiencies introduced by programmer — optimizer

4. Adjusts pseudo-assembly composition and order to match target machine — sched-
uler

Research and development in back end is growing rapidly.
o EPIC Architectures <= (|n{c|-HP codename for “ltanium”; uses
e Binary re-optimization compiler to identify parallelism)

e Runtime optimization

e Optimizations requiring additional hardware support

Optimization for i := 0 to 10

ADDI rl1l = r0 + O < r1 holds loop index |

LOOP:
LOAD r2 = M[FP + a] < load address of array a
ADDI r3 = 1r0 + 4 < load constant 4
MUL r4 = r3 * ril & calculate offset for index i
ADD r5 = r2 + r4 < calculate address of afi]
LOAD r6 = M[FP + X] & load content of x

STORE Mlxrsl = x6 < store x in a[i]

ADDI rl = rl + 1 <increment loop counter |
BRANCH rl <= 10, LOOP < repeat, unless exit condition holds

How can we optimize this code for code size/speed/resource usage/...?

Optimization for i := 0 to 10

do al[i] = x; —

ADDI rl1l = r0 + O < r1 holds loop index |

LOOP :
LLOAD r2 = M[FP + a]‘ < load address of array a
ADDI |r3 = r0 + 4] & load constant 4
MUL r4 = r3 * rl & calculate offset for index i
ADD ¥ = r2 + r4 & calculate address of afi]
LOAD ‘r6 = M[FP + X]‘ & load content of x

TORE =6 in af
STORE MI[r5] r & store x in ali]

ADDI rl = rl + 1 <increment loop counter |
BRANCH rl <= 10, LOOP < repeat, unless exit condition holds

Instructions not dependent of iteration count... ‘
Loop invariant code removal... .21 be moved outside the loop!

Register Allocation el L s ke 40
do al[i] = x; —_
ADDI rl = r0 + O
LOAD |r2 = M[FP + a]
ADDI |r3 = r0 + 4
LOAD |r6 = M[FP + x]|
LOOP: Q: can any of the registers be
MUL r4 = r3 * rl shared/reused? — analyze
ADD rs = r2 + r4 liveness/def-use

STORE M[r5] = r6

ADDI rl =1rl + 1
BRANCH rl <= 10, LOOP

Uses 6 virtual registers, only have S real registers...

Register Allocation el L s ke 40
do al[i] = x; —_
ADDI rl = r0 + O
LOAD |r2 = M[FP + a]
ADDI |r3 = r0 + 4
LOAD |r6 = M[FP + x]|
LOOP: Q: can any of the registers be
MUL r4 r3 * rl shared/reused? — analyze
ADD rS }? ri liveness/def-use

A: registers r4 and r5 don’t
overlap — can map to same
register, say r3!

ADDI rl =1rl + 1
BRANCH rl <= 10, LOOP

Uses 6 virtual registers, only have S real registers...

Scheduling

7 A ADDI rl = r0 + O

2 LOAD r2 = M[FP + A]

3 ADDI r3 = 1r0 + 4

4 LOAD r4d = M[FP + X]
LOQOP:

1 MUL s = 3 * xrl

2

3 ADD r5 = r2 + r5

4 STORE M[r5] = r4

5 ADDI rl =rl + 1

6 BRANCH rl <= 10, LOOP

Multiply instruction takes 2 cycles...

Q: can we exploit this?

Scheduling

7 A ADDI rl = r0 + O

2 LOAD r2 = M[FP + A]

3 ADDI r3 = 1r0 + 4

4 LOAD r4d = M[FP + X]
LOOP:

1 MUL s = 3 * xrl

2

3 ADD r5 = r2 + r5

4 STORE M[r5] = r4

5 ADDI rl =rl + 1

6 BRANCH rl <= 10, LOOP

Multiply instruction takes 2 cycles...

A: can use the “empty slot” to execute some other instruction A,
as long as A is independent (does not consume the value in r5)

Scheduling

W NP

O U1 W N

ADDI
LOAD
ADDI
LOAD

LOOP:

MUL

ADD

STORE

ADDI

BRANCH rl <=

rl =
r2 =
r3 =
r4 =

r5 =

r5 =

M[r5]
rl =

ro +
MI[FP
ro +
M[FP

r3 *

r2 +

= Y4

rl +
10,

0 1
+ A] 5
4

3

X

+ X] 4
rl

1

2
r5

3

4
1

5
LOOP

Multiply instruction takes 2 cycles...

ADDI
LOAD
ADDI
LOAD

STORE
BRANCH rl <=

rl
r2
r3
r4

r5
rl
r5

M[r5]

ro +
M[FP
ro +
M[FP

A]

+ b 4+ O

X]

r3 * ril
ri + 1
r2 + rb
= r4
10, LOOP

Can use the “empty slot” to execute some other instruction A, as
long as A is independent (does not consume the value in r5)

Backend analyses and tranformations

e.g. loop-invariant
code removal

l

v

—= Optimization —=Register Allocation—= Scheduling —=

Control Flow Analysis——- Dataflow Analysis

e Control Flow Analysis determines the how instructions are fefched during execution.
e Control Flow Analysis precedes dataflow analysis.
e Dataflow analysis determines how data flows among instructions.

e Dataflow analysis precedes optimization, register allocation, and scheduling.

Control Flow Analysis

Control Flow Analysis determines the how instructions are fefched during execution.

e Control Flow Graph - graph of instructions with directed edge /; — [; 1ff /; can be
executed immediately after /;.

Control Flow Analysis Example

1 r1 =0

r3 = 1r3 + 1
JUMP NEXT

ODD:
7 ¥4 = 1r4d + 1

NEXT :
8 BRANCH rl <= 10, LOOP

Control Flow Analysis Example

1 r1l = 0

r3 = 1r3 + 1
JUMP NEXT

ODD:
7 r4 = 1r4 + 1

NEXT:
8§ BRANCH rl1l <= 10, LOOP

mhmhhhmhh’h&‘--

Basic Blocks

e Basic Block - run of code with single entry and exit.
e Control flow graph of basic blocks more convenient.
e Determine by the following:

1. Find leaders:

(a) First statement
(b) Targets of conditional and unconditional branches
(¢) Instructions that follow branches

2. Basic blocks are leader up to, but not including next leader.

(extra labels and jumps mentioned in previous lecture now omitted for simplicity)

CFG of Basic Blocks

=] Cre:

LOOP : ™ BB1 1
—1BB2 l
g
BB4 2
3 r3 = 1r3 + 1 ‘4'——|’_7
JUMP NEXT BB3 [
> | BB5 3
ODD : 6 .g ~
NEXT : 1

5] BRANCH rl <= 10, LOOP End

Domination Motivation

Constant Propagation:

|

rl =4

|

r2=rl+35

1.
2

1>

propagate r1=4

. exploit,4+5=9

2=9

“constant folding’

l<— assume r1 dead here

Domination Motivation

Constant Propagation:

|

rl =4

y

1
2=rl+5

1.

2

propagate r1=4

e

xploit,4+5=9

'_1_>

“constant folding”

l<— assume r1 dead here
What about this:

|

|

rl =4

\/

r2=rl+35

|

—

\/

2=9

|

Domination Motivation

Constant Propagation:

|

rl =4 1. propagate r1=4 l
2. exploit 4+5=9 2 =0

— _

|

'

Y

l

What about this

l | | |

\/—b\/

r2=rl+35 2=9

| |

lllegal if r1=4 does not hold in the other incoming arc! -- Need to analyze
which basic blocks are guaranteed to have been executed prior to join.

Dominator Analysis

e Assume every Control Flow Graph (CFG) has start node sy with no predecessors.

e Node d dominates node n 1if every path of directed edges from sy to n must go
through d.

e Every node dominates itself.

Dominator Analysis

e Assume every Control Flow Graph (CFG) has start node sy with no predecessors.

e Node d dominates node n 1if every path of directed edges from sy to n must go
through d.

e Every node dominates itself.

e Consider:

e If d dominates each of the p;, then d dominates 7.

e If d dominates 7, then ¢ dominates each of the p;.

Dominator Analysis

e If d dominates each of the p;, then ¢ domuinates .

o If d dominates n, then d dominates each of the p,.

e Dom|n| = set of nodes that dominate node 7.

e /V = set of all nodes.

e Computation: starting point: n dominated by all nodes

1. Dom|sy| = {s¢}. j
2.forn € N — {5 0} do Dom [‘n} =N

3. while (changes to any Dom/|n| occur) do
4. forn e N —{sy} do
5. Dom|n| = {n} U (ﬂpepmd[n]DO'rn.. [p])

nodes that dominate all predecessors of n

Dominator Analysis Example

1
Node | Dom|n| Dom|n] IDom|n]
s0=1 1
”?_ \ 2 1-12
<~ A= | 3 | 112
i) 4 | 1-12
Sy
— . 5 [-12
5 6
i _ 6 1-12
; : 7 1-12
8 1-12
l 9 1-12
,9 11 10 1-12
|) 11 [-12
2
10 12 l 2 1 = 1 2

Task: fill in column Dom|n]

Dominator Analysis Example

1 Node | Dom|n| Dom|n] IDom|n]
s0=] | 1
< \ 2 1-12 1.2
< = 3 1-12 1,2.3
:)4] 12 1.2.4
- l‘f'“ '3‘6 5 1-12 1,2.5
6 1-12 1.2.4.6
y o 7 | 1-12 1,27
8 1-12 1,2.5.8
9 1-12 1.2.5.8.9
? 1 10 1-12 1.2.5.8.9.10
11 | 1-12 1.2.7.11
0 1 12 1-12 1.2,12

More concise information: immediate dominators/dominator tree.

Dominator Analysis Example

e Every node n (n # sp) has exactly one immediate dominator [Dom|n|.

e [Dom|
e [Domn

| dominates n

o [Dom|n

| #n

does not dominate anv other dominator of 7.

1

Hence: last dominator of n on any

path from s0 to n is IDom[n]

2
_
5
8
9
10 1

(S ‘.

Node| Dom|n] I Dom|n]
] 1
2 1,2
3 1,2,3
4 1,2.4
5 1,2,5
6 1,2,4,6
7 1,2,7
8 1,2,5.8
D 1,2,5.8.9
10 1,2,5,8.9.10
11 1,2,7,11
12 1,2,12

Task: fill in column IDom|n]

Dominator Analysis Example

e Every node n (n # sp) has exactly one immediate dominator [Dom|n|.

e [Dom|n| # n Hence: last dominator of n on any

o IDom|[n] dominates n path from s0 to n is IDom[n]

e [Dom|n| does not dominate anv other dominator of 7.

1 Node| Dom|n] I Dom|n]

- 2 1,2 1

o~ 3 1.2.3 2

s) 4 1,2,4 2

L~ 5 1,2,5 2

5 S| 6 1,2,4,6 4

e e 7 1,2,7 2

7 8 1,2,5.8 5

| 9 1,2,5.8,9 8

K 11 10 1,2,5.8,9,10 9

11 1,2,7,11 7

" - 12 1,2,12 2

Use of Immediate Dominators: Dominator Tree

Immediate dominators can be arranged in tree

e root:sO < children of node n: the nodes m such that n=IDom[m]
* hence: each node dominates only its tree descendants

l —
Node D()/II[II}]D()/n[/z} 30_1
S]] - |
1.2 1
. ~ 3 1,23 2 2
o 4 1.2.4 Tl I -
5 . 5 1,2,5 2 3 4 5 7 19
g - 7 1.2.7 2
1.2.5.8 5 6 8 11
. . 9 1.2.5.8.9 8 |
10 1.2.5.8.9.10 9 9
p 11 1.2.7.11 7
10 12 12 1,2,12 2 |
| 10

— efficient representation of dominator information
. : . (note: some tree arcs are
— used for other types of analysis (e.g. control dependence) CFG edges, some are not)

Post Dominator

e Assume every Control Flow Graph (CFG) has exif node & with no successors.

e Node p post-dominates node n 1f every path of directed edges from n to = must go
through p.

e Every node post-dominates 1tself.

e Derivation of post-dominator and immediate post-dominator analysis analogous to
dominator and immediate dominator analysis.

e Post-dominators will be useful in computing control dependence.

e Control dependence will be useful in many future optimizations.

Loop Optimization

e [arge fraction of execution time 1s spent in loops.
e Effective loop optimization 1s extremely important.
e First step 1n loop optimization — find the loops.

e A Joop 1s a set of CFG nodes S such that:

1. there exists a header node h 1n S that dominates all nodes 1n S.

— there exists a path of directed edges from / to any node n S.
— h 1s the only node 1n S with predecessors not 1n S.

2. from any node 1n S, there exists a path of directed edges to h.

e A loop 1s a single entry, multiple exit region.

Examples of Loops

|
1
1 7\
1 2
7\ %
2—3—4 _—
| |
/5

Examples of Loops

Header node: 1

Two loops, with identical
header node: 1 Header node: 1

Header node: 2

Back Edges

1
e - Ve N

3 4
 =se— = e Back-edge - flow graph edge from node . to node / such
, ; ,

° that / dominates n
Ty N)
g - e Each back-edge has a corresponding natural loop.
9 11

ST Back-edges: 3> 2,4>2.9>8,10> 5

10 12

Natural Loops Back-edge | Header of
nat.loop —

322
| 4> 2
- - 9->38
R 10 > 5
{ T ;} e Natural loop of back-edge (n, h):
\thgﬁ,i\é — has a loop header /.
[e e 1s a path from x to n not containing /.
8 7

e A node & may be header of more than one natural loop.

Y s 6 — set of nodes X such that 4 dominates » € X and there
/
|
\
\

e Natural loops may be nested.

\ 10 12

Natural Loops

Back-edge Header of
nat.loop =

12

ol

yal ~
.f “‘&./\‘{-

fﬁf : |

|

\

\ i :

N

352
4>2 2 2,4
9> 8 8 8, 9
10> 5 5 5,8, 9, 10

e Natural loop of back-edge (n, h):

— has a loop header h.

— set of nodes X such that i dominates » € X and there
1s a path from z to n not containing .

e A node & may be header of more than one natural loop.

e Natural loops may be nested.

Q: Suppose we had an additional
edge 5 = 3 - s this a backedge?

Natural Loops

Back-edge Header of
nat.loop =

12

ol

yal ~
.f “‘&./\‘{-

fﬁf : |

|

\

\ i :

N

352
4>2 2 2,4
9> 8 8 8, 9
10> 5 5 5,8, 9, 10

e Natural loop of back-edge (n, h):

— has a loop header h.

— set of nodes X such that i dominates » € X and there
1s a path from z to n not containing .

e A node & may be header of more than one natural loop.

e Natural loops may be nested.

Q: Suppose we had an additional
edge 5 = 3 - s this a backedge?

A: No! 3 does not dominate 5!

Loop Optimization

e Compiler should optimize inner loops first.

— Programs fypically spend most time 1 mnner loops.

— Optimizations may be more effective — loop invariant code removal.
e Convenient to merge natural loops with same header.
e These merged loops are not natural loops.

e Not all cycles in CFG are loops of any kind

Loop Optimization

e Compiler should optimize inner loops first.

— Programs fypically spend most time 1 mnner loops.

— Optimizations may be more etfective — loop invariant code removal.
e Convenient to merge natural loops with same header.
e These merged loops are not natural loops.

e Not all cycles in CFG are loops of any kind

| | {1,2,3}is not a loop:
This CFG does not « 1is not a header: there are no paths/arcs
contain a loop! back to 1
\ » 2is not a header: it does not dominate 1 or 3
 similarly for 3

{2,3} is not a loop:
2 -3 . 2 is not a header: it does not dominate 3

— "« similarlyfor3

Loop Optimization

Loop invariant code motion
e An instruction 1s loop invariant if it computes the same value 1n each iteration.

e Invariant code may be hoisted outside the loop. “into the edge” leading to the header.

ADDI rl1 = xr0 + O

LOAD r2 = M[FP + a]

ADDI r3 = r0 + 4

LOAD r6 = M[FP + X]
LOOP:

MUL r4 = r3 * rl

ADD r5 = r2 + r4

STORE M[r5] = ré6

ADDI rl =1rl1l + 1
BRANCH rl <= 10, LOOP

Loop Optimization

e Induction variable analysis and elimination - 7 1s an induction variable if only
definitions of ¢ within the |oop increment/decrement i, and by a loop-independent value.

e Strength reduction - replace expensive mstructions (like multiply) with cheaper
ones (like add).

ADDI rl = r0 + O

LOAD r2 = M[FP + a]

ADDI r3 = r0 + 4 _ _ | |

LOAD 16 = M[FP + x] Q: is there an induction variable here?
LOOP :

MUL r4d = r3 * ril

ADD r5 = r2 + r4

STORE M[r5] = r6

ADDIT rl =rl1l + 1
BRANCH rl <= 10, LOOP

Loop Optimization

e Induction variable analysis and elimination - 7 1s an induction variable 1f only
definitions of ¢ within the |oop increment/decrement i, and by a loop-independent value.

e Strength reduction - replace expensive mstructions (like multiply) with cheaper
ones (like add).

ADDI
LOAD
ADDI
LOAD

LOQOP:
MUL
ADD
STORE

ADDI

rl = r0 + O

r2 = M[FP + a]
r3 = 1r0 + 4

ri = r3 * rl ¢
r5 = r2 + r4 o '0/0//’5@@9
M[r5] = r6 / r1 is induction

vanable|
F1- rl o4 Qumﬂﬂﬂﬂﬂ

BRANCH rl <= 10, LOOP

Loop Optimization

e Induction variable analysis and elimination - 7 1s an induction variable 1f only
definitions of i within the |oop increment/decrement I, by a loop-independent value.

e Strength reduction - replace expensive mstructions (like multiply) with cheaper
ones (like add).

ADDI ¥i—30—+8
LOAD r2 = M[FP + a]
ADDI #3—=—x0—+4 r4 =-4
LOAD 16 = M[FP + X]

LOOP:
MUL r4—=T3——TT rd =r4d + 4 /[replace * by +
ADD r5 = r2 + r4

STORE M[r5] = ré6

ADDT wd—ri—v—s EIE-EE.EI

BRANCH ++—=—36- LOOP
r4 <=4(

Non-Loop Cycles

Remember:; this CFG does not
contain a loop!

Reduction: collapse nodes, eliminate edges \/\
2 — 3

e Loops are instan¢es of reducible flow graphs.

—_\ —

"~

— Each cycle of nodes has a unique header.

— During reduction, entire loop becomes a single node.
e Non-Loops are instances of irreducible flow graphs.

— Analysis and optimization 1s more efficient on reducible flow graphs.
— Irreducible flow graphs occur rarely in practice.

« Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads
to reducible flow graphs.
« Use of goto’s may lead to irreducible flow graphs.

— Irreducible flow graphs can be made reducible by node-splitting.

Node Splitting

1.

duplicate a node of

the cycle, say
—

Node Splitting

1 1. duplicate a node of 1
the cycle, say
J
2. connect the copy to 2/\
2 ~3 its successor and X 3

~ predecessor ~

Node Splitting

1 1. duplicate a node of 1
the cycle, say
—— ,
2. connect the copy to 2/\
2 ~3 its successor and \ 3
~ predecessor ~

3. the successor of
the copy is the loop
header!

Reduction

Collapse nodes, eliminate edges

