Topic 7:
Intermediate Representations

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Intermediate Representations

Stream of Abstract /_\
Source Tokens Syntax Tree | Semanffic IR™ Target
——e Jexer ——— Parser ——— Analvi\/‘ Back End———

Intermediate Representation (IR):
e An abstract machine language
e Expresses operations of target machine
e Not specific to any particular machine
e Independent of source language
IR code generation not necessary:
e Semantic analysis phase can generate real assembly code directly.

e Hinders portability and modularity.

Intermediate Representations

Suppose we wish to build compilers for n source languages and m target machines.
Case 1: no IR

e Need separate compiler for each source language/target machine combination.
e A total of n * m compilers necessary:.

e Front-end becomes cluttered with machine specific details, back-end becomes clut-
tered with source language specific details.

Case 2: IR present

e Need just n front-ends, m back ends.

Intermediate Representations

Java Sparc
ML
\ /- Mips

FIGURE 7.1. Compilers for five languages and four target machines:
(left) without an IR, (right) with an IR.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

Properties of a Good IR

e Must be convenient for semantic analysis phase to produce.
e Must be convenient to translate into real assembly code for all desired target ma-
chines.
— RISC processors execute operations that are rather simple.
« Examples: load, store, add, shift, branch
« IR should represent abstract load, abstract store, abstract add, etc.
— CISC processors execute more complex operations.

« Examples: multiply-add, add to/from memory

« Simple operations in IR may be “clumped” together during instruction selec-
tion to form complex operations.

IR Representations

The IR may be represented in many forms:
e Liberty, IMPACT, and Elcor compilers use pseudo-assembly.
® occC and Tiger use expression trees.
e Intel’s Electron, and HP’s production compiler use both.
Expression trees:
e exp: constructs that compute some value, possibly with side etfects.
e stm: constructs that perform side effects and control flow.

signature TREE = sig

datatype exp = CONST of int

NAME of Temp.label

TEMP of Temp.temp

(Explanations on BINOP of binop * exp * exp
next slides) MEM of exp

CALL of exp * exp list

ESEQ of stm * exp

IR Expression Trees

TREE continued:

and stm

(Explanations on

end

next slides)

and binop

and relop

MOVE of exp * exp

EXP of exp

JUMP of exp * Temp.label list
CJUMP of relop * exp * exp *
Temp.label * Temp.label
SEQ of stm * stm
LABEL of Temp.label

PLUS | MINUS |MUL

DIV |AND|OR

LSHIFT|RSHIFT|ARSHIFT |XOR

EQ|NE|LT|GT|LE

GE |ULT |ULE

UGT | UGE

EXxpressions

Expressions compute some value, possibly with side effects.

CONST (z) integer constant

NAME (n) symbolic constant n corresponding to assembly language label (abstract
name for memory address)

TEMP (1) temporary ¢, or abstract/virtual register ¢

BINOP (op, €1, €3) €1 op ey, e evaluated before es
e integer arithmetic operators: PLUS, MINUS, MUL, DIV
e integer bit-wise operators: AND, OR, XOR

e integer logical shift operators: LSHIFT, RSHIFT
e integer arithmetic shift operator: ARSHIFT

EXxpressions

MEM (e) contents of wordSize bytes of memory starting at address e

e wordSize 1s defined in Frame module.
e if MEM 1s used as left operand of MOVE statement = store
e 1f MEM 1s used as right operand of MOVE statement = load

CALL (f, [) application of function f to argument list /

e subexpression [1s evaluated first

e arguments 1n list / are evaluated left to right

ESEQ (s, ¢) the statement s evaluated for side-effects, ¢ evaluated next for result

Statements

10

Statements have side effects and perform control flow.
MOVE (TEMP (t) , e) evaluate e and move result into temporary 7.
MOVE (MEM (e1) , e9) evaluate e, yielding address a; evaluate eo, store result in
wordSize bytes of memory stating at address a
EXP (e) evaluate expression e, discard result.
JUMP (e, labs) jump to address e
e ¢ may be literal label (NAME (/)), or address calculated by expression
e [abs specifies all locations that e can evaluate to (used for dataflow analysis)
e jump to literal label [: JUMP (NAME (/) , [[])
CJUMP (op, e1, e», t, [) evaluate ey, then es; compare results using op; if true,
jump to £, else jump to f
e EQ. NE: signed/unsigned integer equality and non-equality
e LT GT, LE, GE: signed integer inequality
e ULT, UGT, ULE, UGE: unsigned integer inequality

Statements

11

SEQ (s1, so) statement s; followed by s

LAREL (/) label definition - constant value of / defined to be current machine code
address

e similar to label definition 1n assembly language
e use NAME (/) to specity jump target, calls, etc.
e The statements and expressions in TREE can specify function bodies.

e ['unction entry and exit sequences are machine specific and will be added later.

Next:

* generation of IR code from Absyn

* heavily interdependent with design of FRAME module in MCIL
(abstract interface of activation records, architecture-independent)

But first ...

Midterm exam info

When? Thursday, March 10th, 3pm - 4:20pm
Where? cs 104 (HERE)

Closed book / notes, no laptop/smartphone....
Honor code applies

Material in scope:
e up to HW 3 (parser), and
« anything covered in class until this Friday.

Preparation:
« exercises at end of book chapters in MCIL
 old exams: follow link on course home page

Midterm exam prep QUIZ (also because it's Tuesday)

13

Problem 3: (20%) (Spring 2011)
Consider the expression language from the typing lectures, without functions, products, or subtypes, as summarized
below. Define the typing context I' = [y : ref int, b : bool| and the expression € by

let r =3 inif (x < !y) v b then alloc (z + 1) else let z = y:=5 in 4 end end.

Is there some type T such that I' - e : 7 1s derivable using the rules? If no. say why not, Le. show where an attempt to
construct a typing derivation fails. If yes, give a suitable typing derivation.

e = ...|=1|0|1|...|tt|HH |ede|if ethencelsee|x
let r =eineend |alloce | le | e:=¢
@ u= 4| —-|x|AalVv]<]|=
T == bool|int | ref r | unit
e < {tt, i} nef...,—1,0,1,...} z:Tel
BooL ——————— NUM ' ' VAR ——m8M8M—
'k e: bool 'bn:int A 'bz:71
I'Feq:int I'-é; : bool
'k ez :int I' ez : bool
10p P e{+,—, BOp e {A,V
I'ei @es:int =%} Fl—ffl-;?;-ffz:buner { r
I'Fe1: bool
I'Fei:int I'Fe2:int _ . I'bea:m Theg:r
cor ' ey @ ea: bool @ei< =} [Tk I'-if ey theneselse es: 7
~Ther:o TlNx:o|llea:T F'e:+
LET ALLOC
I'let r=¢cinezend : 7 ' alloc e : ref 7
, I'-e:refr . TI'kej:refr ' ea:T
READ ——MM— WRITE
. 'Hle:r ' e1:=e2 : unit

Translation of Abstract Syntax

Goal: function Translate: Absyn.exp => “IR”

Observation: different expression forms in Absyn.exp suggest
use of different parts of IR

e if Absyn.exp computes value = Tree.exp
e if Absyn.exp does not compute value = Tree.stm

e if Absyn.exp has boolean value = Tree.stmand Temp. labels

Solution 1: given e:Absyn.exp, always generate a Tree.exp term:

 case A: immediate

 case B: instead of a Tree.stm s, generate Tree.ESEQ(s, Tree. CONST 0)
 case C: “Tree.ESEQ (s, Tree.TEMP r)”: cf expression on slide 16
Resulting code less clean than solution 2

14

Translation of Abstract Syntax

15

Solution 2:
define a wrapper datatype with “injections” (ie constructors) for the 3 cases

datatype exp = Ex of Tree.exp
| Nx of Tree.stm

Cx of Temp.label * Temp.label -> Tree.stm

e Ex “expression” represented as a Tree . exp
e Nx “no result” represented as a Tree . stm

e Cx “conditional” represented as a function. Given a false-destination label and a
true-destination label, 1t will produce a Tree.stm which evaluates some condi-
tionals and jumps to one of the destinations.

Translation of Abstract Syntax (Conditionals)

Translation of a simple conditional into a Tree.stm:
X > y:
Cx(fn (t, f£) => CJUMP(GT, x, v, t, f))

Translation of a more complex conditional into a Tree.stm:

a > b | Cc < d:
Cx(fn (t, £) => SEQ(CJUMP (GT, a, b, t, z),
SEQ (LABEL z, CJUMP (LT, ¢, d, t, £))))

Translation of a more conditional into a Tree.exp, to be assigned to a variable:
a = X > V:

Cx corresponding to “X > y” must be converted into Tree . exp e. Then, can use
MOVE (TEMP (a), e)
Need conversion function unkx: exp => Tree.exp. Convenient to have unNx and unCx, too:

val unkEx: exp -> Tree.exp
val unNx: exp -> Tree.stm
val unCx: exp -> (Temp.label * Temp.label -> Tree.stm)

16

Translation of Abstract Syntax (Conditionals)

17

The three conversion functions:

val unkEx: exp -> Tree.exp
val unNx: exp -> Tree.stm
val unCx: exp -> (Temp.label * Temp.label -> Tree.stm)

a := X > Vy:
MOVE (TEMP (a) , unEx(Cx(t,f) => ...)

unEx makes a Tree . exp even though e was Cx.

Implementation?

Translation of Abstract Syntax

Implementation of function UNEX: exp => Tree.exp:

structure T = Tree

fun unEx (Ex(e)) = e
| unEx(Nx(s)) = T.ESEQ(s, T.CONST(0))
| unEx (Cx (genstm)) =
let val r = Temp.newtemp ()
val t = Temp.newlabel ()
val £ = Temp.newlabel ()
in T.ESEQ (seq[T.MOVE (T.TEMP(r), T.CONST(1l)),
genstm(t, £),
T.LABEL (),
T.MOVE (T.TEMP (T.CONST (0)),
T.LABEL(t)],
T.TEMP (r)) Pseudocode

end

Example: flag := x>y:
genstmt = fun (t,f) =>
CJUMP (GT, Temp x, Temp y, t_label, f_label)

Translation of Abstract Syntax

Primary result of sematic analysis:
* atype environment TENV: collects type declarations, ie
maps type names to representations of type
* avalue environment VENV: collects variable declarations,
le maps variable names x to either
* atype (if x represents a non-function variable)
* a lists of argument types, and a return type (if x
represents a function)

But also: generate IR code
Tiger: translation functions transExpr, transVar, transDec, and
transTy based on the syntactic structure of Tiger’s Abysn.

In particular: TransExp returns record {Tree.exp, ty}.

IR code generation complex for Tiger

20

 don’t want to be processor specific: abstract notion of frames, with
abstract parameter slots (“access”): constructors inFrame or inReg,

« further abstraction layer to separate implementation of translate
function from use of these functions in semantic analysis (type check)

IR code generation complex for Tiger

21

 don’t want to be processor specific: abstract notion of frames, with
abstract parameter slots (“access”): constructors inFrame or inReg,

« further abstraction layer to separate implementation of translate
function from use of these functions in semantic analysis (type check)

Root problem: escaped variables
Address-taken variables
Call by reference variables
Nested functions
Stack-allocated data structures (records)

IR code generation complex for Tiger

 don’t want to be processor specific: abstract notion of frames, with
abstract parameter slots (“access”): constructors inFrame or inReg,

« further abstraction layer to separate implementation of translate
function from use of these functions in semantic analysis (type check)

Root problem: escaped variables Absence of these features
Address-taken variables would make frame stack

Call by reference variables construction and hence IR
Nested functions emission MUCH easier

Stack-allocated data structures (records)

22

IR code generation complex for Tiger

 don’t want to be processor specific: abstract notion of frames, with
abstract parameter slots (“access”): constructors inFrame or inReg,

« further abstraction layer to separate implementation of translate
function from use of these functions in semantic analysis (type check)

Root problem: escaped variables Absence of these features
Address-taken variables would make frame stack

Call by reference variables construction and hence IR
Nested functions emission MUCH easier

Stack-allocated data structures (records)

C Compiler design >
Language design

Example of modern language that avoids these features: Java

IR code generation: “local” variable access

e Case 1: variable v declared in current procedure’s frame
InFrame (k) :

MEM (BINOP (PLUS, TEMP (FP), CONST (k)))

k: offest in own frame

FP 1s declared in FRAME module.

e Case 2: vaniable v declared 1n temporary register

InReg(t 103):
TEMP (t 103)

Choice as to which variables are inFrame and which ones are inReg is
architecture-specific, so implemented inside FRAME module.
FRAME also provides mechanism to construct abstract activation records,
containing one inFrame/inReg access for each formal parameter.

24

IR code generation: variable access

e Case 3: variable v not declared in current procedure’s frame, need to generate IR
code to follow static links

InFrame (k n) :
MEM (BINOP (PLUS, CONST(k n),
MEM (BINOP (PLUS, CONST (k n-1),

MEM (BINOP (PLUS, CONST (k 2),
MEM (BINOP (PLUS, CONST(k 1), TEMP(FP)))))))))

1, k 2,..., k n-1: static link offsets
n: offset of v in own frame

k_
k

25

Simple Variables

To construct simple variable IR tree, need:
e [;: level of function f 1n which v used
e [,: level of function g in which v declared
e MEM nodes added to tree with static link offsets (k_1, .., k.n-1)

e When /, reached, offset k_n used.

Thus, IR code generation for a function body can be done using uniform
notion of “parameter slots” (“access”) in an abstract description of Frames:
* interface of frame says for each parameter whether it's inFrame or inReg
« different implementations of Frame module can follow different policies

* given any Frame implementation, Translate generates suitable code

26

Array Access

Given array variable a,

&(af[0]) = a
&(alll]) = a + w, where w 1s the word-size of machine
&(al2]) = a + (2 * w)

Let e be the IR tree for a:

ali]:
MEM (BINOP (PLUS, e, BINOP(MUL, 1, CONST (w))))

Compiler must emit code to check whether i 1s out of bounds.

27

Record Access

type rectype = {fl:int, f2:int, f3:int}

offset: 0 1 2

var a:rectype := rectype{fl=4, f2=5, f3=6}
Let e be IR tree for a:

a.f3: 2
MEM (BINOP (PLUS, e, BINOP (MUL, CONSTPSQ, CONST (w))))

Compiler must emit code to check whether a 1snil.

28

Records: allocation and deallocation

29

Records can outlive function invocations, so
« allocation happens not on stack but on , by call to an other runtime
function to which a call is emitted by the compiler
« should include code for (type-correct) initialization of components
* details below

Records: allocation and deallocation

30

Records can outlive function invocations, so
« allocation happens not on stack but on , by call to an other runtime
function to which a call is emitted by the compiler
« should include code for (type-correct) initialization of components
* details below
* deallocation: no explicit instruction in the source language, so either
* no deallocation (poor memory usage: memory leak), or
 compiler has an analysis phase that (conservatively) estimates
lifetime of records (requires alias analysis) and inserts calls to

runtime function at appropriate places, or
 dynamic garbage collection (future lecture)

Similar issues arise for allocation/deallocation of arrays.

Conditional Statements — if el then e2 else e3

31

Approach 1: use CJUMP
* ok in principle, but doesn’t work well if e1 contains &, |

Conditional Statements — if el then e2 else e3

32

Approach 1: use CJUMP
* ok in principle, but doesn’t work well if e1 contains &, |

Approach 2: exploit Cx constructor

* yields good code if e1 contains &, |

* treat el as Cx expression =» apply unCx

* use fresh labels as “entry points” for €2 and e3
 freate2, e3 as Ex expressions =» apply unkx

Conditional Statements — if el then e2 else e3

33

Approach 1: use CJUMP
* ok in principle, but doesn’t work well if e1 contains &, |

Approach 2: exploit Cx constructor

* yields good code if e1 contains &, |

* treat el as Cx expression =» apply unCx

* use fresh labels as “entry points” for €2 and e3
 freate2, e3 as Ex expressions =» apply unkx

“if e1 then JUMP t else JUMP f;

t: r:=e2 (*code for €2, leaving result in r*)
JUMP join

f: r:=e3 (*code for €3, leaving result in r*)

join: ... (*program continuation, can use r*)

Conditional Statements — if el then e2 else e3

Pseudocode

Ex (ESEQ (SEQ (unCx (el) (t, £f),
SEQ (LABEL (t)
SEQ (MOVE (TEMP (r) , unEx(e2)),
SEQ (JUMP (NAME (join)),
SEQ (LABEL (f),
SEQ (MOVE (TEMP (r) , unEx(e3)),
LABEL (join)))))))
TEMP (r)))

Optimizations possible, e.g. if e2/e3 are themselves Cx expressions — see MCIL

Strings

Can think of as additional function definitions, tor
which the compiler silently generates code, too

e All string operations performed by run-time system functions.

e In Tiger, C, string literal 1s constant address of memory segment 1nitialized to char-
acters 1n string.
— In assembly, label used to refer to this constant address.

— Label definition includes directives that reserve and initialize memory.

‘‘“foo' ':
1. Translate module creates new label /.
2. Tree.NAME (/) returned: used to refer to string.

3. String fragment “too” created with label /. Fragment 1s handed to code emutter,
which emuits directives to initialize memory with the characters of “foo” at address /.

35

Strings

String Representation:
Pascal fixed-length character arrays, padded with blanks.
C variable-length character sequences, terminated by /000’

Tiger any 8-bit code allowed, including /000’
"fo0"

label:| 3 <= length

O |0 |

36

Strings

37

e Need to invoke run-time system functions

— string operations
— string memory allocation

Frame.externalCall: string * Tree.exXp -> Tree.exp

Frame.externalCall ("stringEqual", [sl, s2])

— Implementation takes into account calling conventions of external functions.

— Easiest implementation:

fun externalCall (s, args) =
T.CALL (T.NAME (Temp.namedlabel (s)), args)

Array Creation

type intarray = array of int
var a:intarray := intarray[10] of 7

Call run-time system function initArrav to malloc and initialize array.

Frame.externalCall ("initArray", [CONST(10), CONST(7)]1)

38

Record Creation

39

type rectype = { fl:int, f2:int, f3:int }
var a:rectype := rectype{fl = 4, f2 = 5, f3 = 6}

ESEQ (SEQ (MOVE (TEMP (result)
Frame.externalCall ("allocRecord",
[CONST (3*'w)])),
SEQ (MOVE (BINOP (PLUS, TEMP (result), CONST (0*w)),

(
CONST (4)),
SEQ (MOVE (BINOP (PLUS, TEMP (result), CONST (1l*w)),
CONST (5)),
SEQ (MOVE (BINOP (PLUS, TEMP (result), CONST (2*w)),
CONST(6)))))),

TEMP (result))

e allocRecord 1s an external function which allocates space and returns address.

e result 1s address returned by allocRecord.

While Loops

40

One layout of a while loop:

while CONDITION do BODY

Cest:
1f not (CONDITION) goto done
BODY
goto test

done:

A break statement within body 1s a JUMP to label done.
transExp and transDec need formal parameter “break’:

e passed done label of nearest enclosing loop
e nceded to translate breaks into appropriate jumps

e when translating while loop, t ransExp recursively called with loop done label in
order to correctly translate body:.

For Loops

Basic 1dea: Rewrite AST 1nto let/while AST; call transExp on result.

for 1 := lo to hi do
body

Becomes:

let
var 1 := 1lo
var limit := hi
in
while (i <= limit) do
(body;
i := 1 + 1)
end

Complication:
I[f1imit == maxint, then increment will overflow 1n translated version.

41

For Loops

Basic 1dea: Rewrite AST 1nto let/while AST; call transExp on result.

for 1 := lo to hi do
body
Becomes: _ _ ,
(Approx.) solution hinted to in MCIL.
let . in if lo <= hi
var 1 := O .
var limit := hi then@b,od_y
in If I <limit
while (i <= limit) do then i++; JUMP |ab
(body; else JUMP done
i := 1+ 1) else JUMP done
end done:
Complication:

[f 1imit == maxint, then increment will overflow 1n translated version.

42

Function Calls

f(al, a2, ..., an) =>
CALL (NAME (1 f), sl::[el, e2,

e s1 static link of £ (computable at compile-time)

e To compute static link, need:

—1_f :levelof tf

— 1_g: level of g, the calling function

e Computation similar to simple variable access.

43

enj)

Declarations

44

Consider type checking of “let” expression: basic idea:

fun transExp (venv, tenv) =

| trexp (A.LetExp{decs, body, pos}) =

let
val {venv = venv’, tenv = tenv’} =
transDecs (venv, tenv, decs)
in
transExp (venv’, tenv’) body

end

Declarations

Consider type checking of “let” expression: basic idea:

fun transExp (venv, tenv) =

| trexp (A.LetExp{decs, body, pos}) =

let
val {venv = venv’, tenv = tenv’} =
transDecs (venv, tenv, decs)
in
transExp (venv’, tenv’) body
end

Complications:
 need auxiliary info level, break inside translation of body
* need to insert code for variable initialization.

Declarations

46

Consider type checking of “let” expression: basic idea:

fun transExp (venv, tenv) =

| trexp (A.LetExp{decs, body, pos}) =
let
val {venv = venv’, tenv = tenv’,Inits=e}=
transDecs (venv, tenv, decs)
in
“ESEQ (e, transExp (venv’, tenv’) body)"
end

Complications:

 need auxiliary info level, break inside translation of body

 need to insert code for variable initialization. Thus, transDecs is modified
to additionally return an expression list e of assignment expressions
that's inserted HERE (and empty for function and type declarations)

Function Declarations

47

e Cannot specity function headers with IR tree, only function bodies.
e Special “glue” code used to complete the function.
e Function 1s translated into assembly language segment with three components:

— prologue
— body

— epilogue

Function Prolog

Prologue precedes body m assembly version of function:
1. Assembly directives that announce beginning of function.
2. Label definition for function name.
3. Instruction to adjust stack pointer (SP) - allocate new frame.

4. Instructions to save escaping arguments nto stack frame, istructions to move non-
escaping arguments into fresh temporary registers.

5. Instructions to store into stack frame any callee-save registers used within function.

48

Function Epilog

Epilogue follows body in assembly version of function:
6. Instruction to move function result (return value) into return value register.
7. Instructions to restore any callee-save registers used within function.
8. Instruction to adjust stack pointer (SP) - deallocate frame.
9. Return 1nstructions (jump to return address).

10. Assembly directives that announce end of function.

e Steps 1, 3, 8, 10 depend on exact size of stack frame.
e These are generated late (after register allocation).

e Step 6:

MOVE (TEMP (RV) , unEx(body))

49

Fragments

signature FRAME = sig

datatype frag = STRING of Temp.label * string
| PROC of {body:Tree.stm, frame:frame}
end

e Each function declaration translated into fragment.
e Fragment translated mto assembly.
e body field 1s mnstruction sequence: 4, 5, 6, 7

e frame contains machine sgaciﬁc information about local variables and parameters.

iInFrame, inReg etc

50

Problem with IR Trees

51

Problem with IR trees generated by the Translate module:
e Certain constructs don’t correspond exactly with real machine instructions.
e Certain constructs interfere with optimization analysis.

e CJUMP jumps to either of two labels, but conditional branch instructions in real
machine only jump to one label. On false condition, fall-through to next instruction.

e ESEQ, CALL nodes within expressions force compiler to evaluate subexpression
in a particular order. Optimization can be done most efficiently if subexpressions
can proceed 1n any order.

e CALL nodes within argument list of CALL nodes cause problems 1f arguments passed
in specialized registers.

Solution: Canonicalizer

Canonicalizer: overview

Source

Lexer

Stream of
Tokens

1

Parser

Abstract
Syntax Tree

Semantic
Analysis

IR Trees

Canon-
icalizer

IR Trees

1

Back End

Target
—_— -

Canonicalizer takes Tree . stm for each function body, applies following transforms:
. Tree.stmbecomes Tree.stm 1list, list of canonical trees. For each tree:

e No SEQ, ESEQ nodes.

e Parent of each CALL node1s EXP(...) or MOVE (TEMP (t), ...)

2. Tree.stm list becomes Tree.stm list list, statements grouped into
basic blocks

e A basic block 1s a sequence of assembly instructions that has one entry and one
exit point.

e First statement of basic block 1s LABEL.

e [ast statement of basic block 1s JUMP, CJUMP.

e No LABEL, JUMP, CJUMP statements in between.
3. Tree.stm list 1list becomes Tree.stm list

e Basic blocks reordered so every CTUMP immediately followed by false label.

e Basic blocks flattened into individual statements.

52

Elimination of (E)SEQs

53

Goal: Move ESEQ and SEQ nodes towards the top of a Tree.stm
by repeatedly applying local rewrite rules

SEQ

[
ESEQ N\ P ... -)/\ /N

/NN /\

(selected rewrite rules on next slides)

Rewrite rules

54

s1

ESEQ

/ \

ESEQ

n

L]

>

ESEQ

/ \

SEQ e

/ \

s1 s2

Rewrite rules

55

s1

ESEQ

/ \

ESEQ

n

L]

>

ESEQ

/ \

SEQ e

/ \

s1 s2

BINOP

op ESEQ e2 9 S

n

ESEQ

/N /N

BINOP

op/ e|1 \92

(also for MEM, JUMP, CJUMP in place of BINOP)

Rewrite rules

ESEQ |1| ESEQ BINOP |Z| ESEQ

/ \ / \ /N /N

s ESEQ "? SEQ € op ESEQ e2 > 2 BINOP

LN L /N /]

e e2

(also for MEM, JUMP, CJUMP in place of BINOP)

What about this:

BINOP ESEQ

/1 / \

op el ESEQ =% s BINOP

/ \2 op/ e|1 \e2

Rewrite rules

57

ESEQ 1 ESEQ
/ \ o / \

s1 ESEQ " SEQ e

/NN

s1 s2

What about this:

BINOP ESEQ

/1 / \

op el ESEQ =% s BINOP

/N L

Incorrect if s contains assignment
to a variable read by e1!

BINOP |Z| ESEQ

/N /N

op ESEQ e2 9 s BINOP
/ N\ /1N
S el op el €2

(also for MEM, JUMP, CJUMP in place of BINOP)

58

Rewrite rules
ESEQ ESEQ

1
/\I_I / \

s1 ESEQ " SEQ e

/NN

BINOP ESEQ

/N /N

op ESEQ e2 9 s BINOP

S/ \e1 op/ |1 \e2

s1 s2
(also for MEM, JUMP, CJUMP in place of BINOP)
What about this: General Solution:
BINOP ESEQ E o
/ l \ / \ BINOP\ / \
MOVE ESEQ
op el ESEQ =P s |3|Nop\ Op/ 6‘1 N0 D / \ / \
/ \ / | TEMP el s BINOP
S e2 op el g2 .)’ ‘ / l \
t op TEMP e2
Incorrect if s contains assignment GEwieE |

to a variable read by e1!

(also for CJUMP in place of BINOP)

Rewrite Rules

Specific solution:

|i| When do s and e commute?
BINOP ESEQ * variables and memory locations
/ | \ / \ accessed by s are disjoint from
op el ESEQ ™ s BINOP those accessed by e
/ \ / |\ * no disjointness but all accesses to
s e o el e such a shared resource are READ
In fact correct if s and e1 commute!

(Similarly for CJUMP)

Rewrite Rules

60

Specific solution:
4]
BINOP ESEQ

/1 / \

op el ESEQ =% s BINOP

/ \ /1N
S e2 op el e2
In fact correct if s and e1 commute!

(Similarly for CJUMP)

But: deciding whether MEM(x) and
MEM(z) represent the same location
requires deciding whether x and z

)ﬂy be equal

Undecidable in general!

When do s and e commute?
* variables and memory locations
accessed by s are disjoint from
those accessed by e
* no disjointness but all accesses to
such a shared resource are READ

Rewrite Rules

Specific solution:
4]
BINOP ESEQ

/1 / \

op el ESEQ =% s BINOP

/ \ /1N
S e2 op el e2
In fact correct if s and e1 commute!

(Similarly for CJUMP)

But: deciding whether MEM(x) and
MEM(z) represent the same location
requires deciding whether x and z

)GV be equal

Undecidable in general!

61

When do s and e commute?
* variables and memory locations
accessed by s are disjoint from
those accessed by e
* no disjointness but all accesses to
such a shared resource are READ

Solution:

Compiler conservatively
approximates disjointness /
commutability, ie performs the
rewrite cautiously
example: e1 == CONST(j)

Rewrite Rules

62

Goal 2: ensure that parent of a CALL is EXP (...) or MOVE(TEMP , ...)
Motivation: calls leave their result in dedicated register rv. Now consider tree T.
BINOP What could go wrong?

VAN

op CALL CALL

[\ [\
f argsl g args2

Rewrite Rules

63

Goal 2: ensure that parent of a CALL is EXP (...) or MOVE(TEMP , ...)
Motivation: calls leave their result in dedicated register rv. Now consider tree T.

BINOP What could go wrong? Call to g will
_ ite result of f (held in rv) before
T / / \ overwrit
op CALL CALL BINOP is executed!

/[\ [\ Solution?
f argsl g args2

Rewrite Rules

64

Goal 2: ensure that parent of a CALL is EXP (...) or MOVE(TEMP , ...)
Motivation: calls leave their result in dedicated register rv. Now consider tree T.

BINOP

VAN

op CALL CALL

/N [\
f argsl g args2

[5] esea

CALL A
MOVE TEMP

/' \ =\ |
Toags TEMP CALL t

/N

t f args
(where t is a fresh temp; don’t apply recursively
under the pattern MOVE(TEMP(..), CALL(..)...))

What could go wrong? Call to g will
overwrite result of f (held in rv) before
BINOP is executed!

Solution: save result of call to f before
calling g, to avoid overwriting rv!

Rewrite Rules

65

Goal 2: ensure that parent of a CALL is EXP (...) or MOVE(TEMP , ...)
Motivation: calls leave their result in dedicated register rv. Now consider tree T.

BINOP

VAN

op CALL CALL

/N [\
f argsl g args2

[5] esea

CALL A
MOVE TEMP

/' \ =\ |
Toags TEMP CALL t

/N

t f args
(where t is a fresh temp; don’t apply recursively
under the pattern MOVE(TEMP(..), CALL(..)...))

What could go wrong? Call to g will
overwrite result of f (held in rv) before
BINOP is executed!

Solution: save result of call to f before
calling g, to avoid overwriting rv!

Homework 1: apply rules 1-5 to rewrite
T until no more rules can be applied. Is
your solution optimal?

Homework 2: can you think of
additional rules, for nested calls?

Elimination of SEQs

66

Associativity of SEQ:

SEQ lEJ SEQ
/N 5 /N

SEQ s3 s1 SEQ

/ \ / \

s1 S2 S2 s3

Final step: once all SEQ’s are at top of
tree, collect list of statements left-to-right

Elimination of SEQs

67

Associativity of SEQ:
SEQ ESEQ
ANEVA
ESEQ s3 S SEQ
/ \ / \
s1 e S2 s3

Final steps: once all SEQ’s are at top of
tree, extract list of statements left-to-right

Midterm exam

End of lecture material that’s relevant
for the midterm.

Thus, MCIL material up to (and
including) Section 8.1 “Canonical
Trees’ Is fair game.

Normalization of branches

69

Remember conditional branch instruction of TREE:
“true” branch +~— [alse” branch

CJUMP (relop, exp, exp, label, label)

Assembly languages: conditional branches typically have only one label

So need to analyze control flow of program: what’s the order in which
an execution might “walk through program”, ie execute instructions?

Normalization of branches

Remember conditional branch instruction of TREE:
“true” branch +~— [alse” branch

CJUMP (relop, exp, exp, label, label)

Assembly languages: conditional branches typically have only one label

So need to analyze control flow of program: what’s the order in which
an execution might “walk through program”, ie execute instructions?

* sequence of non-branching instructions: trivial, in sequential order

« unconditional jumps: obvious — follow the goto

« CJMUP: cannot predict outcome, so need to assume either branch
may be taken

=>» For analysis of control flow, can consider sequences of
non-branching instructions as single node (“basic block”)

70

Basic blocks

71

A basic block is a sequence of statements such that
 the first statement is a LABEL instruction
 the last statement is a JUMP or CJUMP

 there are no other LABELSs, JUMPs, or CJUMPs

Basic blocks

A basic block is a sequence of statements such that
 the first statement is a LABEL instruction
 the last statement is a JUMP or CJUMP

 there are no other LABELSs, JUMPs, or CJUMPs

Task: partition a sequence of statements (Ln: LABEL n; si = straight-line stmt)

L1{s1]s2]s3] CJUMP .. [L2|s4|JUMPL1|L3|s5|s6|s7 [JUMP L2
(L1, L3)

into a sequence of basic blocks

L1{s1|s2[s3| coump .. [L2]s4|sumPL1|L3|s5]s6|s7|Jump L2
(L1, L3)

Partitioning into basic blocks

73

Naive algorithm:

* traverse left-to-right

« whenever a LABEL is found, start a new BB (and end current BB)
 whenever a JUMP or CJUMP is found, end current BB (and start new BB)

s1

L1

S2

S3

CJUMP .
(L1, L3)

s4

L2

L3

SH

S6

JUMP L1

s/

JUMP L2

Partitioning into basic blocks

74

Naive algorithm:

* traverse left-to-right

« whenever a LABEL is found, start a new BB (and end current BB)
 whenever a JUMP or CJUMP is found, end current BB (and start new BB)

(L1, L3)

s1|L1]s2[s3| CJUMP .. |s4|L2|L3[s5]|s6|JUMP L1 |s7|JUMP L2
(L1, L3)
s11L1]s2|s3| CJUMP .. |s41L2|L3|s5]|s6|JUMP L1|s7|JUMP L2

Partitioning into basic blocks

Better algorithm:

traverse left-to-right

whenever a LABEL is found, start a new BB (and end current BB)
whenever a JUMP or CJUMP is found, end current BB (and start new BB)
insert fresh LABELSs at beginnings of BBs that don't start with a LABEL
insert JUMPs at ends of BBs that don’t end with a JUMP or CJUMP

s1|L1|s2|s3| CJUMP .. [s4[L2]|L3|s5|s6|JUMPLT|s7|{JUMP L2

(L1, L3)
JUMRA HUMPA2 MR
y
s1|L1]s2|s3| CJUMP .. 341L2 L3{s5]s6 | JUMP L1 |s7 | JUMP L2
t (L1, L3)—
LO £4 L5

75

Partitioning into basic blocks

Better algorithm:

traverse left-to-right

whenever a LABEL is found, start a new BB (and end current BB)
whenever a JUMP or CJUMP is found, end current BB (and start new BB)
insert fresh LABELSs at beginnings of BBs that don't start with a LABEL
insert JUMPs at ends of BBs that don’t end with a JUMP or CJUMP

s1|L1|s2|s3| CJUMP .. [s4[L2]|L3|s5|s6|JUMPLT|s7|{JUMP L2

(L1, L3)
JUMRA HUMPA2 MR
y
s1|L1]s2|s3| CJUMP .. 341L2 L3{s5]s6 | JUMP L1 |s7 | JUMP L2
t (L1, L3)—
LO £4 L5

76

Ordering basic blocks

Given that basic blocks have entry labels and jumps at end

* relative order of basic blocks irrelevant
* 50 reorder to ensure (if possible) that a block ending in
« CJUMP is followed by the block labeled with the “FALSE” label

« JUMP is followed by its target label

More precisely: cover the collection of basic blocks by a set of traces:
* sequences of stmts (maybe including jumps) that are potentially
executed sequentially
* aims:
 have each basic block covered by only one trace
* use low number of traces in order to reduce number of JUMPS

77

