
1

Topic 7:

Intermediate Representations

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Intermediate Representations

2

Intermediate Representations

3

Intermediate Representations

4

Properties of a Good IR

5

IR Representations

and Tiger

(Explanations on

next slides)

6

IR Expression Trees

(Explanations on

next slides)

7

Expressions

8

Expressions

9

Statements

10

Statements

11

Next:

• generation of IR code from Absyn

• heavily interdependent with design of FRAME module in MCIL

(abstract interface of activation records, architecture-independent)

But first …

Midterm exam info

12

When? Thursday, March 10th, 3pm – 4:20pm

Where? CS 104 (HERE)

Closed book / notes, no laptop/smartphone….

Honor code applies

Material in scope:

• up to HW 3 (parser), and

• anything covered in class until this Friday.

Preparation:

• exercises at end of book chapters in MCIL

• old exams: follow link on course home page

Midterm exam prep QUIZ (also because it’s Tuesday)

13

e3

(Spring 2011)

Translation of Abstract Syntax

Goal: function Translate: Absyn.exp => “IR”

Observation: different expression forms in Absyn.exp suggest

use of different parts of IR

Solution 1: given e:Absyn.exp, always generate a Tree.exp term:

• case A: immediate

• case B: instead of a Tree.stm s, generate Tree.ESEQ(s, Tree.CONST 0)

• case C: “Tree.ESEQ (s, Tree.TEMP r)”: cf expression on slide 16

Resulting code less clean than solution 2

14

Translation of Abstract Syntax

15

Solution 2:

define a wrapper datatype with “injections” (ie constructors) for the 3 cases

Translation of Abstract Syntax (Conditionals)

16

Translation of a simple conditional into a Tree.stm:

Translation of a more complex conditional into a Tree.stm:

Translation of a more conditional into a Tree.exp, to be assigned to a variable:

Then, can use

conversion function unEx: exp => Tree.exp. Convenient to have unNx and unCx, too:

Translation of Abstract Syntax (Conditionals)

17

Implementation?

Translation of Abstract Syntax
unEx: exp => Tree.exp:

Implementation of unNx and unCx similar.

Temp r := 1;

CJUMP (GT, Temp x, Temp y, t_label, f_label);

f_label: Temp r := 0;

t_label: flag := r (*program continuation*)

Example: flag := x>y:

genstmt = fun (t,f) =>

CJUMP (GT, Temp x, Temp y, t_label, f_label)

Pseudocode

18

Translation of Abstract Syntax

Primary result of sematic analysis:

• a type environment TENV: collects type declarations, ie

maps type names to representations of type

• a value environment VENV: collects variable declarations,

ie maps variable names x to either

• a type (if x represents a non-function variable)

• a lists of argument types, and a return type (if x

represents a function)

But also: generate IR code

Tiger: translation functions transExpr, transVar, transDec, and

transTy based on the syntactic structure of Tiger’s Abysn.

In particular: TransExp returns record {Tree.exp, ty}.
19

IR code generation complex for Tiger

• don’t want to be processor specific: abstract notion of frames, with

abstract parameter slots (“access”): constructors inFrame or inReg,

• further abstraction layer to separate implementation of translate

function from use of these functions in semantic analysis (type check)

20

IR code generation complex for Tiger

• don’t want to be processor specific: abstract notion of frames, with

abstract parameter slots (“access”): constructors inFrame or inReg,

• further abstraction layer to separate implementation of translate

function from use of these functions in semantic analysis (type check)

Root problem: escaped variables

Address-taken variables

Call by reference variables

Nested functions

Stack-allocated data structures (records)

:

21

IR code generation complex for Tiger

• don’t want to be processor specific: abstract notion of frames, with

abstract parameter slots (“access”): constructors inFrame or inReg,

• further abstraction layer to separate implementation of translate

function from use of these functions in semantic analysis (type check)

Root problem: escaped variables

Address-taken variables

Call by reference variables

Nested functions

Stack-allocated data structures (records)

:

Absence of these features

would make frame stack

construction and hence IR

emission MUCH easier

22

IR code generation complex for Tiger

• don’t want to be processor specific: abstract notion of frames, with

abstract parameter slots (“access”): constructors inFrame or inReg,

• further abstraction layer to separate implementation of translate

function from use of these functions in semantic analysis (type check)

Root problem: escaped variables

Address-taken variables

Call by reference variables

Nested functions

Stack-allocated data structures (records)

:

Compiler design

Example of modern language that avoids these features: Java

Absence of these features

would make frame stack

construction and hence IR

emission MUCH easier

Language design

23

IR code generation: “local” variable access

24

Choice as to which variables are inFrame and which ones are inReg is

architecture-specific, so implemented inside FRAME module.

FRAME also provides mechanism to construct abstract activation records,

containing one inFrame/inReg access for each formal parameter.

IR code generation: variable access

25

Simple Variables

Thus, IR code generation for a function body can be done using uniform

notion of “parameter slots” (“access”) in an abstract description of Frames:

• interface of frame says for each parameter whether it’s inFrame or inReg

• different implementations of Frame module can follow different policies

• given any Frame implementation, Translate generates suitable code

26

Array Access

27

Record Access

28

2

Records: allocation and deallocation

29

Records can outlive function invocations, so

• allocation happens not on stack but on heap, by call to an other runtime

function ALLOC to which a call is emitted by the compiler

• should include code for (type-correct) initialization of components

• details below

Records: allocation and deallocation

30

Records can outlive function invocations, so

• allocation happens not on stack but on heap, by call to an other runtime

function ALLOC to which a call is emitted by the compiler

• should include code for (type-correct) initialization of components

• details below

• deallocation: no explicit instruction in the source language, so either

• no deallocation (poor memory usage: memory leak), or

• compiler has an analysis phase that (conservatively) estimates

lifetime of records (requires alias analysis) and inserts calls to

runtime function FREE at appropriate places, or

• dynamic garbage collection (future lecture)

Similar issues arise for allocation/deallocation of arrays.

Conditional Statements – if e1 then e2 else e3

31

Approach 1: use CJUMP

• ok in principle, but doesn’t work well if e1 contains &, |

Conditional Statements – if e1 then e2 else e3

32

Approach 1: use CJUMP

• ok in principle, but doesn’t work well if e1 contains &, |

Approach 2: exploit Cx constructor

• yields good code if e1 contains &, |

• treat e1 as Cx expression  apply unCx

• use fresh labels as “entry points” for e2 and e3

• treat e2, e3 as Ex expressions  apply unEx

Conditional Statements – if e1 then e2 else e3

“if e1 then JUMP t else JUMP f”;

t: r := e2 (*code for e2, leaving result in r*)

JUMP join

f: r := e3 (*code for e3, leaving result in r*)

join: … (*program continuation, can use r*)
33

Approach 1: use CJUMP

• ok in principle, but doesn’t work well if e1 contains &, |

Approach 2: exploit Cx constructor

• yields good code if e1 contains &, |

• treat e1 as Cx expression  apply unCx

• use fresh labels as “entry points” for e2 and e3

• treat e2, e3 as Ex expressions  apply unEx

Conditional Statements – if e1 then e2 else e3

“if e1 then JUMP t else JUMP f”;

t: r := e2 (*code for e2, leaving result in r*)

JUMP join

f: r := e3 (*code for e3, leaving result in r*)

join: … (*program continuation, can use r*)

34

Optimizations possible, e.g. if e2/e3 are themselves Cx expressions – see MCIL

Strings
Can think of as additional function definitions, for

which the compiler silently generates code, too

35

Strings

length

36

Strings

37

Array Creation

38

Record Creation

(3*w)])),

39

While Loops

40

For Loops

41

For Loops

42

(Approx.) solution hinted to in MCIL:

in if lo <= hi

then lab: body

if i < limit

then i++; JUMP lab

else JUMP done

else JUMP done

done:

Function Calls

43

Declarations

44

basic idea:

Declarations

45

basic idea:

Complications:

• need auxiliary info level, break inside translation of body

• need to insert code for variable initialization.

Declarations

46

basic idea:

Complications:

• need auxiliary info level, break inside translation of body

• need to insert code for variable initialization. Thus, transDecs is modified

to additionally return an expression list e of assignment expressions

that’s inserted HERE (and empty for function and type declarations)

, inits = e} =

“ESEQ (e,)”

Function Declarations

47

Function Prolog

48

Function Epilog

49

Fragments

50

inFrame, inReg etc

Problem with IR Trees

51

Canonicalizer: overview

52

Elimination of (E)SEQs

53

Move ESEQ and SEQ nodes towards the top of a Tree.stm

by repeatedly applying local rewrite rules

ESEQ
SEQ

SEQ

ESEQ

… 

(selected rewrite rules on next slides)

Goal:

Rewrite rules

54

1

Rewrite rules

55

(also for MEM, JUMP, CJUMP in place of BINOP)

1 2

Rewrite rules

56

(also for MEM, JUMP, CJUMP in place of BINOP)

What about this:

1 2

Rewrite rules

57

(also for MEM, JUMP, CJUMP in place of BINOP)

What about this:

Incorrect if s contains assignment

to a variable read by e1!

1 2

Rewrite rules

58

(also for MEM, JUMP, CJUMP in place of BINOP)

What about this:

Incorrect if s contains assignment

to a variable read by e1!

General Solution:

(also for CJUMP in place of BINOP)

1 2

3

Rewrite Rules

59

Specific solution:

In fact correct if s and e1 commute!

When do s and e commute?

• variables and memory locations

accessed by s are disjoint from

those accessed by e

• no disjointness but all accesses to

such a shared resource are READ

(Similarly for CJUMP)

4

Rewrite Rules

60

Specific solution:

In fact correct if s and e1 commute!

When do s and e commute?

• variables and memory locations

accessed by s are disjoint from

those accessed by e

• no disjointness but all accesses to

such a shared resource are READ

But: deciding whether MEM(x) and

MEM(z) represent the same location

requires deciding whether x and z

may be equal

Undecidable in general!

(Similarly for CJUMP)

4

Rewrite Rules

61

Specific solution:

In fact correct if s and e1 commute!

When do s and e commute?

• variables and memory locations

accessed by s are disjoint from

those accessed by e

• no disjointness but all accesses to

such a shared resource are READ

But: deciding whether MEM(x) and

MEM(z) represent the same location

requires deciding whether x and z

may be equal

Undecidable in general!

Solution:

Compiler conservatively

approximates disjointness /

commutability, ie performs the

rewrite cautiously

example: e1 == CONST(i)

(Similarly for CJUMP)

4

Rewrite Rules

62

Goal 2: ensure that parent of a CALL is EXP (…) or MOVE(TEMP t, …)

Motivation: calls leave their result in dedicated register rv. Now consider tree T.

What could go wrong?

T:

Rewrite Rules

63

Goal 2: ensure that parent of a CALL is EXP (…) or MOVE(TEMP t, …)

Motivation: calls leave their result in dedicated register rv. Now consider tree T.

What could go wrong? Call to g will

overwrite result of f (held in rv) before

BINOP is executed!
T:

Solution?

Rewrite Rules

64

Goal 2: ensure that parent of a CALL is EXP (…) or MOVE(TEMP t, …)

Motivation: calls leave their result in dedicated register rv. Now consider tree T.

(where t is a fresh temp; don’t apply recursively

under the pattern MOVE(TEMP(..), CALL(..)…))

5

What could go wrong? Call to g will

overwrite result of f (held in rv) before

BINOP is executed!
T:

Solution: save result of call to f before

calling g, to avoid overwriting rv!

Rewrite Rules

65

Goal 2: ensure that parent of a CALL is EXP (…) or MOVE(TEMP t, …)

Motivation: calls leave their result in dedicated register rv. Now consider tree T.

(where t is a fresh temp; don’t apply recursively

under the pattern MOVE(TEMP(..), CALL(..)…))

5
Homework 1: apply rules 1-5 to rewrite

T until no more rules can be applied. Is

your solution optimal?

Homework 2: can you think of

additional rules, for nested calls?

What could go wrong? Call to g will

overwrite result of f (held in rv) before

BINOP is executed!
T:

Solution: save result of call to f before

calling g, to avoid overwriting rv!

Elimination of SEQs

66

Final step: once all SEQ’s are at top of

tree, collect list of statements left-to-right

Associativity of SEQ:

6

Elimination of SEQs

67

Final steps: once all SEQ’s are at top of

tree, extract list of statements left-to-right

ESEQ

SEQ

s2 s3

s1

SEQ

ESEQ

s1 e

s3


Associativity of SEQ:

Midterm exam

68

End of lecture material that’s relevant

for the midterm.

Thus, MCIL material up to (and

including) Section 8.1 “Canonical

Trees” is fair game.

Normalization of branches

69

Remember conditional branch instruction of TREE:

CJUMP (relop, exp, exp, label, label)
“true” branch “false” branch

Assembly languages: conditional branches typically have only one label

So need to analyze control flow of program: what’s the order in which

an execution might “walk through program”, ie execute instructions?

Normalization of branches

70

Remember conditional branch instruction of TREE:

CJUMP (relop, exp, exp, label, label)
“true” branch “false” branch

Assembly languages: conditional branches typically have only one label

So need to analyze control flow of program: what’s the order in which

an execution might “walk through program”, ie execute instructions?

• sequence of non-branching instructions: trivial, in sequential order

• unconditional jumps: obvious – follow the goto

• CJMUP: cannot predict outcome, so need to assume either branch

may be taken

 For analysis of control flow, can consider sequences of

non-branching instructions as single node (“basic block”)

Basic blocks

71

A basic block is a sequence of statements such that

• the first statement is a LABEL instruction

• the last statement is a JUMP or CJUMP

• there are no other LABELSs, JUMPs, or CJUMPs

Basic blocks

72

A basic block is a sequence of statements such that

• the first statement is a LABEL instruction

• the last statement is a JUMP or CJUMP

• there are no other LABELSs, JUMPs, or CJUMPs

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

Task: partition a sequence of statements (Ln: LABEL n; si = straight-line stmt)

into a sequence of basic blocks

Partitioning into basic blocks

73

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

• traverse left-to-right

• whenever a LABEL is found, start a new BB (and end current BB)

• whenever a JUMP or CJUMP is found, end current BB (and start new BB)

• insert fresh LABELs at beginnings of BBs that don’t start with a LABEL

• insert JUMPs at ends of BBs that don’t end with a JUMP or CJUMP

Naïve algorithm:

Partitioning into basic blocks

74

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

• traverse left-to-right

• whenever a LABEL is found, start a new BB (and end current BB)

• whenever a JUMP or CJUMP is found, end current BB (and start new BB)

• insert fresh LABELs at beginnings of BBs that don’t start with a LABEL

• insert JUMPs at ends of BBs that don’t end with a JUMP or CJUMP

Naïve algorithm:

Partitioning into basic blocks

75

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)
L0 L4 L5

• traverse left-to-right

• whenever a LABEL is found, start a new BB (and end current BB)

• whenever a JUMP or CJUMP is found, end current BB (and start new BB)

• insert fresh LABELs at beginnings of BBs that don’t start with a LABEL

• insert JUMPs at ends of BBs that don’t end with a JUMP or CJUMP

JUMP L1 JUMP L2 JUMP L3

Better algorithm:

Partitioning into basic blocks

76

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)

s1 s2 s3 s7s6s5s4 L3L2L1 JUMP L1 JUMP L2CJUMP ..

(L1, L3)
L0 L4 L5

• traverse left-to-right

• whenever a LABEL is found, start a new BB (and end current BB)

• whenever a JUMP or CJUMP is found, end current BB (and start new BB)

• insert fresh LABELs at beginnings of BBs that don’t start with a LABEL

• insert JUMPs at ends of BBs that don’t end with a JUMP or CJUMP

• convenient to also add a special LABEL D for epilogue and add JUMP D

JUMP L1 JUMP L2 JUMP L3

Better algorithm:

Ordering basic blocks

77

• relative order of basic blocks irrelevant

• so reorder to ensure (if possible) that a block ending in

• CJUMP is followed by the block labeled with the “FALSE” label

• JUMP is followed by its target label

Given that basic blocks have entry labels and jumps at end

More precisely: cover the collection of basic blocks by a set of traces:

• sequences of stmts (maybe including jumps) that are potentially

executed sequentially

• aims:

• have each basic block covered by only one trace

• use low number of traces in order to reduce number of JUMPS

