Topic 2: Lexing and Flexing

b
COS 320 .‘;.

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

The Compiler

Source Program

for (i=0; 1<20; i++) {
printf ("sd\n", i);

CALL (printf, "%d\n", i)
i=14+1
if(i < 20) GOTO Lé

Lexical Analysis

‘ —Z
Syntax Analysis Z
T
Semantic Analysis T
Z
, ; . =

IR Code Generation

Intermediate Representation
L oe
IR Optimization 2>
®
- ‘ode Cenerati ~
Target Code Generation |

Z
Target Code Optimization 5

Target Program

.LCO: stringz"%d\n"

addl r37 = 0, 0
addl r36 = @ltoff(.LCO), gp
.L6: br.call.sptk.many b0 = printf#
adds r37 = 1, r37
cmp4.ge p6, p7 = 19, r37
(pé) br.cond.dptk .Lé

e [exical Analysis: Break into tokens (think words, punctuation)

e Syntax Analysis: Parse phrase structure (think document, paragraphs, sentences)

e Semantic Analysis: Calculate meaning

Lexical Analysis

 Goal: break stream of ASCI| characters (source/input) into
sequence of tokens
« Token: sequence of characters treated as a unit (cf. word)

Lexical Analysis

 Goal: break stream of ASCI| characters (source/input) into
sequence of tokens

 Token: sequence of characters treated as a unit (cf. word)

 Each token has a token type (cf. classification verb - noun -
punctuation symbol):

Lexical Analysis

Goal: break stream of ASCI| characters (source/input) into

sequence of tokens
Token: sequence of characters treated as a unit (cf. word)
Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER foo, x, quicksort, ... NUM 1, 50, -100
REAL 6.7, 3.9E-33, -4.9 IF if
SEMI ; THEN then

LPAREN (RPAREN) EQ = PLUS +

Lexical Analysis

Goal: break stream of ASCI| characters (source/input) into
sequence of tokens

Token: sequence of characters treated as a unit (cf. word)

Each token has a token type (cf. classification verb - noun -
punctuation symbol):

IDENTIFIER foo, x, quicksort, ... NUM 1, 50, -100
REAL 6.7, 3.9E-33, -4.9 IF if

SEMI : THEN then
LPAREN (RPAREN) EQ = PLUS +

Many tokens have associated semantic information: NUM(1), NUM(50),
IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

Lexical Analysis

Goal: break stream of ASCI| characters (source/input) into
sequence of tokens

Token: sequence of characters treated as a unit (cf. word)
Each token has a token type (cf. classification verb - noun -
punctuation symbol):

IDENTIFIER foo, x, quicksort, ... NUM 1, 50, -100
REAL 6.7, 3.9E-33, -4.9 IF if

SEMI : THEN then
LPAREN (RPAREN) EQ = PLUS +

Many tokens have associated semantic information: NUM(1), NUM(50),
IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

Definition of tokens (mostly) part of language definition
White space and comments often discarded. Pros/Cons?

Lexical Analysis Example

x = (y + 4.0);

Lexical Analysis Example

X = (vy + 4.0);

IDENTIFIER(x) EQ LPAREN IDENTIFIER(y) PLUS

NUM(4.0)0 RPAREN SEMI

Implementing a Lexical Analyzer (Lexer)

10

Option 1: write it from scratch:

Source: text file Stream of tokens
—) 1 | exer for language L

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Source: text file Stream of tokens
—) 1 | exer for language L

Option 2: eat your own dog food! (use a lexical analyzer generator):

Source: text file

Token stream
wrt L2

Token stream
wrt L1

Input: lexing rules for L1 Input: lexing rules for L2

==uus" | oxergenerator awsmus

11

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch

Source: text file Stream of tokens
—) 1 | exer for language L

Option 2: eat your own dog food! (use a lexical analyzer generator)

Source: text file

Token stream
wrt L2

Token stream
wrt L1

Input: lexing rules for L1 Input: lexing rules for L2

==uus" | oxergenerator awsmus

Q: how do we describe the tokens for L1, L2, ...?
A: using another language, of course!

12 that

Theory to the rescue: regular expressions

13

Some definitions

 An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, .Z, a, .. 2}, {0, .9}

Theory to the rescue: regular expressions

14

Some definitions

 An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, .Z, a, .. 2}, {0, .9}

¢« A

(over alphabet A) is a finite sequence of symbols from A.

Theory to the rescue: regular expressions

15

Some definitions

 An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, .Z, a, .. 2}, {0, .9}

« A (over alphabet A) is a finite sequence of symbols from A.
* Alanguage (over A) is a (finite or infinite) set of strings over A.

Theory to the rescue: regular expressions

Some definitions

 An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, .Z, a, .. 2}, {0, .9}

« A (over alphabet A) is a finite sequence of symbols from A.
* Alanguage (over A) is a (finite or infinite) set of strings over A.
Examples:

the ML language: set of all strings representing correct ML programs (infinite)
the language of ML keywords: set of all strings that are ML keywords (finite)
the language of ML tokens: set of all strings that map to ML tokens (infinite)

16

Theory to the rescue: regular expressions

Some definitions

 An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, .Z, a, .. 2}, {0, .9}

« A (over alphabet A) is a finite sequence of symbols from A.
* Alanguage (over A) is a (finite or infinite) set of strings over A.
Examples:

« the ML language: set of all strings representing correct ML programs (infinite)
 the language of ML keywords: set of all strings that are ML keywords (finite)
» the language of ML tokens: set of all strings that map to ML tokens (infinite)

Q: How to describe languages? A(for lexing): regular expressions!

REs are finite descriptions/representations of (certain) finite or infinite
languages, including
 the language of a (programming) language’s tokens (eg the language of ML tokens)

 the language describing the language of a (programming) language’s tokens,
 the language describing ...

17

Constructing regular expressions

Base cases

Inductive cases: given RE’s ' and ',

18

Constructing regular expressions

Base cases

« the RE ¢ (epsilon): the (finite) language containing only the empty string.
« for each symbol a from A, the RE a denotes the (finite) language
containing only the string a.

Inductive cases: given RE’s ' and ',

19

Constructing regular expressions

Base cases

* the RE ¢ (epsilon): the (finite) language containing only the empty string.
« for each symbol a from A, the RE a denotes the (finite) language
containing only the string a.

Inductive cases: given RE’s ' and ',

« the RE (alternation, union) describes the language

containing the strings in I or I\,
Example: a | b denotes the two-element language {a, b}

Constructing regular expressions

21

Base cases

* the RE ¢ (epsilon): the (finite) language containing only the empty string.
« for each symbol a from A, the RE a denotes the (finite) language
containing only the string a.

Inductive cases: given RE’s ' and ',

« the RE (alternation, union) describes the language

containing the strings in I or I\,
Example: a | b denotes the two-element language {a, b}

« The RE VIV (concatenation) denotes the strings that can be

written as the concatenation where 1 in from 'V and 1 is from
Example: (a|b)(alc) denotes the language {aa, ac, ba, bc}

Constructing regular expressions

Base cases

* the RE ¢ (epsilon): the (finite) language containing only the empty string.
« for each symbol a from A, the RE a denotes the (finite) language
containing only the string a.

Inductive cases: given RE’s ' and ',

22

« the RE (alternation, union) describes the language

containing the strings in I or I\,
Example: a | b denotes the two-element language {a, b}

« The RE VIV (concatenation) denotes the strings that can be

written as the concatenation i where m in from V' and 1 is from
Example: (a|b)(alc) denotes the language {aa, ac, ba, bc}
« The RE V* (Kleene closure/star) denotes the (infinitely many) strings

obtained by concatenating finitely many elements from
Example: (a|b)* denotes the language {¢, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, ...}

Regular Expression Examples

For alphabet 2 = {a,b}:

Strings with an even number of a’s: RE? =

Strings that with an odd number of b’s:

Regular Expression Examples

For alphabet 2 ={a,b}: ‘Solutions not unique!

Strings with an even number of a’s: RE®= b*(ab*ab*)*

Strings that with an odd number of b’s:

Regular Expression Examples

For alphabet 2 ={a,b}: ‘Solutions not unique!

Strings with an even number of a’s: RE®= b*(ab*ab*)*

Strings that with an odd number of b's: a*ba*(ba*ba*)

Regular Expression Examples

For alphabet 2 ={a,b}:

Strings with an even number of a’s: RE®= b*(ab*ab*)*

Strings that with an odd number of b's: a*ba*(ba*ba*)

Strings with an even number of a's
OR an odd number of b’s:

Strings that can be split into a string with
an even number of a's, followed by a string
with an odd number of b’s:

Regular Expression Examples

For alphabet 2 ={a,b}:

Strings with an even number of a’s: RE®= b*(ab*ab*)*

Strings that with an odd number of b's: a*ba*(ba*ba*)

Strings with an even number of a’s _ RE®
OR an odd number of b’s: - |

Strings that can be split into a string with
an even number of a's, followed by a string
with an odd number of b’s:

Regular Expression Examples

For alphabet 2 ={a,b}:

Strings with an even number of a’s: RE®= b*(ab*ab*)*

Strings that with an odd number of b's: a*ba*(ba*ba*)

Strings with an even number of a’s - RE?|
OR an odd number of b’s: -

Strings that can be split into a string with
an even number of a’s, followed by a string = RE®
with an odd number of b’s:

Regular Expression Examples

For alphabet 2 = {a,b}:

Strings with an even number of a's: RE®= b*(ab*ab*)*
Strings with an odd number of b's: = a*ba*(ba*ba*)
Strings with an even number of a’s - Rg?

OR an odd number of b's:) |

Strings that can be split into a string with
an even number of a’s, followed by a string = RE®
with an odd number of b’s:

Optional Homework:
Strings with an even number of a’s and an odd number of b’s....

Implementing RE’s: finite automata

Source; text file

Token stream
wrt L2

Token stream
wrt L1

| Autorgaton
for L2
RE

Input: Jexing-rules for L2

RE
Input: lexirg-rutes-for L1

=un=s" | exergenerator ammmus

/ Finite automata (aka finite state machines, FSM’s): \
a computational model of machines with finite memory

Components of an automaton over alphabet A:

« afinite set S of nodes (“states”)
 asetof directed edges (“transitions”)
s -4» t, each linking two states and
\ labeled with a symbol from A

a designated start state s0 from S,

indicated by “arrow from nowhere”
 anonempty set of final (“accepting”)

states (indicated by double circle)/

30

Finite Automata recognize languages

31

Definition: the language recognized by an FA is the set of (finite)
strings it accepts.

Q: how does the finite automaton D
accept a string A?

follow the transitions:
start in the start state s0 and inspect the first symbol,
when in state s and inspecting symbol a, traverse one edge
labeled a to get to the next state. Look at the next symbol.
3. Atfter reading in all n symbols: if the current state s is a final one,
accept. Otherwise, reject.
4. whenever there’'s no edge whose label matches the next symbol:
reject.

A:
1.
2.

Classes of Finite Automata

32

Deterministic finite automaton (DFA)
« all edges leaving a node are uniquely labeled.

Nondeterministic finite automaton (NFA)

« two (or more) edges leaving a node may be identically
uniquely labeled. Any choice that leads to acceptance is fine.

 edges may also be labeled with €. So can “jump” to the next
state without consuming an input symbol.

Classes of Finite Automata

33

Deterministic finite automaton (DFA)
« all edges leaving a node are uniquely labeled.

Nondeterministic finite automaton (NFA)

« two (or more) edges leaving a node may be identically
uniquely labeled. Any choice that leads to acceptance is fine.

 edges may also be labeled with €. So can “jump” to the next
state without consuming an input symbol.

Strategy for obtaining a DFA that recognizes exactly the
language described by an RE:

1. convert RE into an NFA that recognizes the language
2. transform the NFA into an equivalent DFA‘\

Remember Tuesday’s quiz?

NFA Examples

Over alphabet {a, b}:

Strings with an even number of a’s:

Strings with an odd number of b’s:

NFA Examples

Over alphabet {a, b}:

Strings with an even number of a’s: D 6@ d @
a

Strings with an odd number of b’s:

NFA Examples (adhoc)

Over alphabet {a, b}:

Strings with an even number of a’s: D 6@ a @
a

Strings with an odd number of b's: : ——»W

Can we systematically generate NFA's from RE’s?

RE to NFA Rules

RE to NFA Rules

RE to NFA Rules

RE to NFA Rules

RE to NFA Conversion: examples for | and concat

41

Strings with an even number of a’s
OR an odd number of b's: RE? |

Strings that can be split into a string with
an even number of a’s, followed by a
string with an odd number of b’s:

RE @

RE to NFA Conversion: examples for | and concat

42

Strings with an even number of a’s
OR an odd number of b's: RE? |

Strings that can be split into a string with
an even number of a’s followed by a
string with an odd number of b’s:

RE @

NFA to DFA Conversion

43

ldea:
« combine identically labeled NFA transitions
« DFA states represent sets of “equivalent” NFA states

NFA to DFA conversion

44

Auxiliary definitions:

edge(s,a)={t|si>t}

set of NFA states reachable from NFA state s by an a step

closure(-)=> U(U edge(s, ¢))

S €

set of NFA states reachable from any s € = by an ¢ step

Main calculation:

DFA-edge(D,a) = closure(< eL:JDedge(s,a))

set of NFA states reachable from D by making
one a step and (then) any number of ¢ steps

NFA to DFA Example

closure(-)

U (sLeJ edge(s, €))

NFA to DFA Example

Step 1: closure sets
1:{1}
2:{2}
3:{3,5}
{4 6}

r—’H
H,—J

6:{6

—

closure(-)

U (sLeJ edge(s, €))

edge(s, a)

(t]s—t)

NFA to DFA Example

47

Step 1:
closure sets

1 {1}
{2
(3,5}
{4,6)
{5}

{6}

o Ul A W N

closure(")

Step 2: edge sets

. Ja__ b lc

T EEIE -

p) 4

3

. i

c 2 46

6 i
edge(s, a)

S€

U(U edges, €)) (t]s25t)

[DFA-edge(D)]

| U _edge(s,
closure(Upe ge(s,a))

48

O U1 AW DN

U (

‘ Step 3: DFA-sets

Cl(2) + CI(3) {}
={2,3,5}

{

{2} t

13,5} {2,3,5}
{4,6}

{5} {2,4,6}
{6} {4,6}
closure(*)

U edge(s, ¢))
S€E

{
1

edge(s, a)

d

(] s2t)

Cl(2)+CI(4) CI(4) + CI(6)
={246} ={4,6;

Cl(4) = {46} {
1 1

| DFA-edge(D,a) |

U _ed
. Y jeage(s.a)

closure(

NFA to DFA Example

Step 4:
Transition matrix

-E_E___
cR) + @)
= {2,3,5)
B {2,3,5 0O Cl(2)+CIi(4) CI(4) +CI(6)
={2,4,6} = {4,6}
C {2,4,6} { Cl(4) = {4,6} {}

D 14,6} 1 1 1

49

NFA to DFA Example

50

Step 5:
Initial state: closure of
initial NFA state

-IE_E___
) + CI(3) {2
= {2,3,5}
B {235} O CI(2)+Cl(4) CI(4) + CI(6)
=246} ={46}
C {2,4,6} { Cl(4) = {46} {}
D {4,6} { { {

NFA to DFA Example

Step 6:
Final state(s): DFA
states “containing”
a final NFA state
-__I-_
Cl(2) + CI(3) {3
= {2,3,5}
B {2,3,5} O CI(2)+Cl(4) ClI(4) + CI(6)
={2,4,6} = {4,6}
C {2,4,6} {} Ci(4) = {46} {}
D {4,6} {} {} {}

s« Algorithm in pseudo-code: Appel, page 27

The Longest Token

52

Lexer should identify the longest matching token:

1fz8 should be lexed as IDENTIFIER, not as two tokens IF, IDENTIFIER

Hence, the implementation

saves the most recently encountered accepting state of the DFA
(and the corresponding stream position) and

updates this info when passing through another accepting state
Uses the order of rules as tie-breaker in case several tokens (of
equal length) match

Other Useful Techniques

53

Read Chapters 1 and 2.

Equivalent states:
e Eliminate redundant states, smaller FA.
e Do Exercise 2.6 (hand in optional).
FA — RE:
e Useful to confirm correct RE — FA. (See exercise 2.7)
e GNFAs! (generalized NFA's: transitions may be labeled with RE’s)

e Sece: Introduction to the Theory of Computation by Michael Sipser

Summary

Source: text file

Token stream
wrt L2

Token stream
wrt L1

Input: lexing rules for L1 Input: lexing rules for L2

e Motivated use of lexer generators for
partitioning input stream into tokens

o Three formalisms for describing and
implementing lexers:

Regular expressions

NFA’s

DFA’s

Conversions RE -> NFA -> DFA

e Next lecture: practicalities of lexing
(ML-LEX)

The Compiler

55

Source Program

for (i=0; i<20; i++) {
printf ("%d\n", i);

Lexical Analysis 3 }
Syntax Analysis 2 i=0
Semantic Analysi = e
Semantic Analysis ; CALL (printf, "%d\n", i)
IR Code Generation © i=1i+1
if(i < 20) GOTO L6
Intermediate Representation
.LCO: stringz"%d\n"
. ™
IR Optimization >
@ addl r37 = 0, r0
Target Code Generation 7 addl r36 = @ltoff(.LCO), gp
m
_ - T 7 .L6: br.call.sptk.many b0 = printf#
' Target Code Optimization 5 adds r37 = 1, r37

Target Program

cmpd4.ge p6, p7 = 19, r37
(p6é) br.cond.dptk .L6

e [exical Analysis: Break mto tokens (think words, punctuation)

e Syntax Analysis: Parse phrase structure (think document, paragraphs. sentences)

e Semantic Analysis: Calculate meaning

Practicalities of lexing: ML Lex, Lex, Flex, ...

56

The first phase of a compiler 1s called the Lexical Analyzer or Lexer.

Implementation Options:
1. Wnite Lexer from scratch.

2. Use Lexical Analyzer Generator.

RE’s Lexer
——
Generator

Source
B —

Lexer

Stream of

Tokens

.

Finite Automata

e ml-lex 1s a lexical analyzer generator for ML.

e lex and flex are lexical analyzer generators for C.

ML Lex: lexer generator for ML (similar tools for C: lex, flex)

57

e Input to ml-lex 1s a set of rules specitying a lexical analyzer.
e Output from ml-lex is a lexical analyzer in ML.
e A rule consists of a pattern and an action:

— Pattern 1s a regular expression.

— Action 1s a fragment of ordinary ML code. (Typically returns a token type to
calling function.)

e Examples:

if => (print ("Found token IF")) ;
[0-9]+ => (print ("Found token NUM")) ;

e General Idea: When prefix of input matches a pattern, the action 1s executed.

Lexical Specification

58

Specification of a lexer has three parts:

User Declarations
%%

ML-LEX Definitions
%%

Rules

User declarations:
« definitions of values to be used in the action fragments of rules
« Two values must be defined in the section:
 type lexresult: type of the value returned by the rule actions
 fun eof(): function to be called by the generated lexer when
end of input stream is reached (eg call parser, print “done”)

Lexical Specification

Specification of a lexer has three parts:

User Declarations
%%

ML-LEX Definitions
%%

Rules

ML-LEX Definitions:
* definitions of regular expressions abbreviations:
DIGITS=[0..9]+;
LETTER = [a-zA-Z];
* definitions of start states to permit multiple lexers to run together:
%s STATE1 STATE2 STATES;
Example: entering “comment” mode, e.g. for supporting nested comments

59

Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%
ML-LEX Definitions
%%
Rules
optional, states must
be defined in

ML-LEX section reg.expr

Rules: \ \

 format: <start-state-list> pattern => ();
* Intuitive reading: if you're in state mode, lex strings matching
the pattern as described by the

60

Rule Patterns

61

symbol matches

a individual character “a” (not for reserved chars ?2.*,+,[.{)
\{ reserved character {

labc]| a|b|c

la-zA-Z| |lowercase and capital letters

“abc?”
{LETTER}
a*

at

a?

alb

any character except new line

newline

tab

abc? taken literally (reserved chars as well)

Use abbreviation LETTER defined in ML-LEX Definitions
0 or more a’s

] or more a’s

Oorla

aorb

if|iff => (print ("Found token IF or IFF"));

[0-9] + =>

(print ("Found token NUM")) ;

Rule Actions

62

e Actions can use various values defined 1n User Declarations section.
e Two values always available:

type lexresult

- type of the value returned by each rule action.
fun eof ()

- called by lexer when end of input stream reached.

e Several special variables also available to action fragments.
— yytext - mput substring matched by regular expression.
— yypos - file position of beginning of matched string.

— continue () -recursively calls lexing engine.

Start States

63

e Start states permit multiple lexical analyzers to run together.
e Rules prefixed with a start state 1s matched only when lexer 1s 1n that state.
e States are entered with YYBEGIN.

e Example:

o\°

COMMENT

o\® o\ o\©

o M

<INITIAL> if => (print ("Token IF"));

<INITIAL> [a-z]+ => (print ("Token ID")) ;
<INITIAL> " (*" = (YYBEGIN COMMENT; continue()) ;
<COMMENT > "*) ™" (YYBEGIN INITIAL; continue()) ;
<COMMENT> "\n"|. => (continue());

>
>

Rule Matching and Start States

64

<start_state_list> regular_expression => (action_code) ;

e Regular expression matched only 1f lexer 1s in one of the start states in start state list.
e If no start state list specified, the rule matches 1 all states.

e Lexer begins in predefined start state: INITIAL

If multiple rules match in current start state, use Rule Disambiguation.

Rule Disambiguation

65

e Longest match - longest mitial substring of input that matches regular expression 1s
taken as next token.

if8 matches ID(*'if8’ '), not IF () and NUM (8).

e Rule priority - for a particular substring which matches more than one regular ex-
pression with equal length, choose first regular expression in rules section.

If we want 1f to match IF (), not ID(**if’ "), put keyword regular ex-
pression before i1dentifier regular expression.

Example

66

(* -*- ml -*- *)

type lexresult = string

fun eof () = (print ("End-of-file\n"); "EOF")

o\®
o\°

INT=[1-9] [0-9] *;
%s COMMENT ;
%%

<INITIAL>"/*"
<COMMENT>"* /"
<COMMENT>"\n" | .

<INITIAL>if
<INITIAL>then
<INITIAL>{INT}
<INITIAL>H n | ll\nll | ll\tll
<INITIAL>.

(YYBEGIN COMMENT; continue());
(YYBEGIN INITIAL; continue());
(continue ()) ;

{(print ("Token IF\n") ;*"IF");
(print ("Token THEN\n") ; "THEN") ;
(print ("Token INT(" = yytext
(continue ()) ;

(print ("ERR: ’'" © yytext

")\H");"INT");

"’.\n");"ERR");

Example in Action

67

% cat x.txt

if 999 then 0999
/* This is a comment 099 if */
if 12 then 12

% sml
Standard ML of New Jersey, Version 109.33, November 21, 1997 [CM; ...]
- CM.make () ;

val it = () : unit
- MyLexer.tokenize ("x.txt");

Token IF
Token INT (999)
Token THEN
ERR: '0'.
Token INT (999)
Token IF
Token INT(12)
Token THEN
Token INT(12)
End-of-file
val it = () : unit

