
1

Topic 2: Lexing and Flexing

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

2

The Compiler

3

Lexical Analysis

• Goal: break stream of ASCII characters (source/input) into

sequence of tokens

• Token: sequence of characters treated as a unit (cf. word)

• Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER

REAL

LPAREN

SEMI

IF

NUM

THEN

RPAREN

foo, x, quicksort, …

6.7, 3.9E-33, -4.9

;

(

1, 50, -100

if

then

)

• Many tokens have associated semantic information: NUM(1), NUM(50),

IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

• White space and comments often discarded. Pros/Cons?

• Definition of tokens (mostly) part of language definition

PLUSEQ = +

…

4

Lexical Analysis

• Goal: break stream of ASCII characters (source/input) into

sequence of tokens

• Token: sequence of characters treated as a unit (cf. word)

• Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER

REAL

LPAREN

SEMI

IF

NUM

THEN

RPAREN

foo, x, quicksort, …

6.7, 3.9E-33, -4.9

;

(

1, 50, -100

if

then

)

• Many tokens have associated semantic information: NUM(1), NUM(50),

IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

• White space and comments often discarded. Pros/Cons?

• Definition of tokens (mostly) part of language definition

PLUSEQ = +

…

5

Lexical Analysis

• Goal: break stream of ASCII characters (source/input) into

sequence of tokens

• Token: sequence of characters treated as a unit (cf. word)

• Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER

REAL

LPAREN

SEMI

IF

NUM

THEN

RPAREN

foo, x, quicksort, …

6.7, 3.9E-33, -4.9

;

(

1, 50, -100

if

then

)

• Many tokens have associated semantic information: NUM(1), NUM(50),

IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

• White space and comments often discarded. Pros/Cons?

• Definition of tokens (mostly) part of language definition

PLUSEQ = +

…

6

Lexical Analysis

• Goal: break stream of ASCII characters (source/input) into

sequence of tokens

• Token: sequence of characters treated as a unit (cf. word)

• Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER

REAL

LPAREN

SEMI

IF

NUM

THEN

RPAREN

foo, x, quicksort, …

6.7, 3.9E-33, -4.9

;

(

1, 50, -100

if

then

)

• Many tokens have associated semantic information: NUM(1), NUM(50),

IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

• White space and comments often discarded. Pros/Cons?

• Definition of tokens (mostly) part of language definition

PLUSEQ = +

…

7

Lexical Analysis

• Goal: break stream of ASCII characters (source/input) into

sequence of tokens

• Token: sequence of characters treated as a unit (cf. word)

• Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER

REAL

LPAREN

SEMI

IF

NUM

THEN

RPAREN

foo, x, quicksort, …

6.7, 3.9E-33, -4.9

;

(

1, 50, -100

if

then

)

• Many tokens have associated semantic information: NUM(1), NUM(50),

IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

• White space and comments often discarded. Pros/Cons?

• Definition of tokens (mostly) part of language definition

PLUSEQ = +

…

8

Lexical Analysis Example

9

Lexical Analysis Example

EQ

NUM(4.0)

IDENTIFIER(x) IDENTIFIER(y)LPAREN PLUS

RPAREN SEMI

10

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Lexer for language L
Stream of tokensSource: text file

11

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Option 2: eat your own dog food! (use a lexical analyzer generator):

Lexer for language L
Stream of tokensSource: text file

Input: lexing rules for L1 Input: lexing rules for L2

Lexer

for L1

Token stream

wrt L2

Source: text file

Lexer generator

Lexer

for L2

Token stream

wrt L1

12

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch

Option 2: eat your own dog food! (use a lexical analyzer generator)

Lexer for language L
Stream of tokensSource: text file

Input: lexing rules for L1 Input: lexing rules for L2

Q: how do we describe the tokens for L1, L2, …?

Lexer

for L1

Token stream

wrt L2

Source: text file

Lexer generator

Lexer

for L2

Token stream

wrt L1

A: using another language, of course!

Yeah, but how do we describe the tokens of that language???

13

Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

14

Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

15

Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

• A language (over A) is a (finite or infinite) set of strings over A.

16

Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

• A language (over A) is a (finite or infinite) set of strings over A.
Examples:

• the ML language: set of all strings representing correct ML programs (infinite)

• the language of ML keywords: set of all strings that are ML keywords (finite)

• the language of ML tokens: set of all strings that map to ML tokens (infinite)

17

Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols.
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

• A language (over A) is a (finite or infinite) set of strings over A.
Examples:

• the ML language: set of all strings representing correct ML programs (infinite)

• the language of ML keywords: set of all strings that are ML keywords (finite)

• the language of ML tokens: set of all strings that map to ML tokens (infinite)

Q: How to describe languages? A(for lexing): regular expressions!

REs are finite descriptions/representations of (certain) finite or infinite

languages, including
• the language of a (programming) language’s tokens (eg the language of ML tokens)

• the language describing the language of a (programming) language’s tokens,

• the language describing …

18

Constructing regular expressions

Base cases

Inductive cases: given RE’s M and N,

19

Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

Inductive cases: given RE’s M and N,

20

Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

• the RE M | N (alternation, union) describes the language

containing the strings in M or N.
Example: a | b denotes the two-element language {a, b}

Inductive cases: given RE’s M and N,

21

Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

• the RE M | N (alternation, union) describes the language

containing the strings in M or N.
Example: a | b denotes the two-element language {a, b}

• The RE MN (concatenation) denotes the strings that can be

written as the concatenation mn where m in from M and n is from N.
Example: (a|b)(a|c) denotes the language {aa, ac, ba, bc}

Inductive cases: given RE’s M and N,

22

Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

• the RE M | N (alternation, union) describes the language

containing the strings in M or N.
Example: a | b denotes the two-element language {a, b}

• The RE MN (concatenation) denotes the strings that can be

written as the concatenation mn where m in from M and n is from N.
Example: (a|b)(a|c) denotes the language {aa, ac, ba, bc}

• The RE M* (Kleene closure/star) denotes the (infinitely many) strings

obtained by concatenating finitely many elements from M.
Example: (a|b)* denotes the language {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, …}

Inductive cases: given RE’s M and N,

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

Strings that with an odd number of b’s: RE =
b

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

b* (a b* a b*)*

Strings that with an odd number of b’s: RE =
b

Solutions not unique!

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

b* (a b* a b*)*

Strings that with an odd number of b’s: RE =
b a* b a* (b a* b a*)*

Solutions not unique!

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

b* (a b* a b*)*

Strings that with an odd number of b’s: RE =
b a* b a* (b a* b a*)*

Strings with an even number of a’s

OR an odd number of b’s:
RE =

a,b

Strings that can be split into a string with

an even number of a’s, followed by a string

with an odd number of b’s:

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

b* (a b* a b*)*

Strings with an even number of a’s

OR an odd number of b’s:
RE =

a,b
RE |

a
RE

b

Strings that with an odd number of b’s: RE =
b a* b a* (b a* b a*)*

Strings that can be split into a string with

an even number of a’s, followed by a string

with an odd number of b’s:

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

b* (a b* a b*)*

Strings with an even number of a’s

OR an odd number of b’s:
RE =

a,b
RE |

a
RE

b

Strings that with an odd number of b’s: RE =
b a* b a* (b a* b a*)*

Strings that can be split into a string with

an even number of a’s, followed by a string

with an odd number of b’s:
RE =a,b RE

a
RE

b

Regular Expression Examples

For alphabet Σ = {a,b}:

Strings with an even number of a’s: RE =
a

b* (a b* a b*)*

Strings with an even number of a’s

OR an odd number of b’s:
RE =

a,b
RE |

a
RE

b

Optional Homework:

Strings with an even number of a’s and an odd number of b’s….

Strings with an odd number of b’s: RE =
b a* b a* (b a* b a*)*

Strings that can be split into a string with

an even number of a’s, followed by a string

with an odd number of b’s:
RE =a,b RE

a
RE

b

30

Implementing RE’s: finite automata

RE RE

Lexer

for L1

Token stream

wrt L2

Source: text file

Lexer generator

Lexer

for L2

Token stream

wrt L1

Input: lexing rules for L1 Input: lexing rules for L2

Automaton Automaton

Finite automata (aka finite state machines, FSM’s):

a computational model of machines with finite memory

Components of an automaton over alphabet A:

• a finite set S of nodes (“states”)

• a set of directed edges (“transitions”)

s t, each linking two states and

labeled with a symbol from A

• a designated start state s0 from S,

indicated by “arrow from nowhere”

• a nonempty set of final (“accepting”)

states (indicated by double circle)

a

31

Finite Automata recognize languages

Definition: the language recognized by an FA is the set of (finite)

strings it accepts.

A: follow the transitions:

1. start in the start state s0 and inspect the first symbol, a1

2. when in state s and inspecting symbol a, traverse one edge

labeled a to get to the next state. Look at the next symbol.

3. After reading in all n symbols: if the current state s is a final one,

accept. Otherwise, reject.

4. whenever there’s no edge whose label matches the next symbol:

reject.

Q: how does the finite automaton D

accept a string A?

a b
a a

b c

32

Classes of Finite Automata

Deterministic finite automaton (DFA)

• all edges leaving a node are uniquely labeled.

Nondeterministic finite automaton (NFA)

• two (or more) edges leaving a node may be identically

uniquely labeled. Any choice that leads to acceptance is fine.

• edges may also be labeled with ε. So can “jump” to the next

state without consuming an input symbol.

33

Classes of Finite Automata

Deterministic finite automaton (DFA)

• all edges leaving a node are uniquely labeled.

Nondeterministic finite automaton (NFA)

• two (or more) edges leaving a node may be identically

uniquely labeled. Any choice that leads to acceptance is fine.

• edges may also be labeled with ε. So can “jump” to the next

state without consuming an input symbol.

Strategy for obtaining a DFA that recognizes exactly the

language described by an RE:

1. convert RE into an NFA that recognizes the language

2. transform the NFA into an equivalent DFA
Remember Tuesday’s quiz?

NFA Examples

Strings with an even number of a’s:

Strings with an odd number of b’s:

Over alphabet {a, b}:

NFA Examples

Strings with an even number of a’s: D :
a

Strings with an odd number of b’s:

a

a

b b

Over alphabet {a, b}:

NFA Examples (adhoc)

Strings with an even number of a’s: D :
a

Strings with an odd number of b’s:

a

a

b b

b

b

a a

D :
b

Can we systematically generate NFA’s from RE’s?

Over alphabet {a, b}:

37

RE to NFA Rules

38

RE to NFA Rules

39

RE to NFA Rules

40

RE to NFA Rules

41

RE to NFA Conversion: examples for | and concat

Strings with an even number of a’s

OR an odd number of b’s: RE |
a

RE
b

a

a

b bb

b

a a

ε

ε

D
a

D
b

Strings that can be split into a string with

an even number of a’s, followed by a

string with an odd number of b’s:

RE
a

RE
b

b

a
a

b
b

b

a a

D
a

D
b

42

RE to NFA Conversion: examples for | and concat

Strings with an even number of a’s

OR an odd number of b’s: RE |
a

RE
b

a

a

b bb

b

a a

ε

ε

D
a

D
b

Strings that can be split into a string with

an even number of a’s followed by a

string with an odd number of b’s:

RE
a

RE
b

b

a
a

b
b

b

a a

D
a

D
b

43

NFA to DFA Conversion

b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

Idea:

• combine identically labeled NFA transitions

• DFA states represent sets of “equivalent” NFA states

44

NFA to DFA conversion

DFA-edge(D,a) = closure(U edge(s,a))
s є D

set of NFA states reachable from D by making

one a step and (then) any number of ε steps

Main calculation:

set of NFA states reachable from NFA state s by an a step

a
edge(s, a) = { t | s t }

set of NFA states reachable from any s є S by an ε step

s є S
closure(S) = S U (U edge(s, ε))

Auxiliary definitions:

45

NFA to DFA Example

b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

s є S
S U (U edge(s, ε))

closure(S)

46

NFA to DFA Example

b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

s є S
S U (U edge(s, ε))

closure(S)

a
{ t | s t }

edge(s, a)

Step 1: closure sets

1 : {1}

2:{2}

3:{3,5}

4:{4,6}

5:{5}

6:{6}

47

NFA to DFA Example
b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

s є S
S U (U edge(s, ε))

closure(S)

a
{ t | s t }

edge(s, a) DFA-edge(D,a)

closure(U edge(s,a))
s є D

Step 1:

closure sets

Step 2: edge sets

a b c

1 2,3 - -

2 - 4 -

3 - - -

4 - - -

5 - 2 4,6

6 - - -

1 {1}

2 {2}

3 {3,5}

4 {4,6}

5 {5}

6 {6}

48

NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

s є S
S U (U edge(s, ε))

closure(S)

a
{ t | s t }

edge(s, a) DFA-edge(D,a)

closure(U edge(s,a))
s є D

Step 3: DFA-sets

a b c

1 2,3 - -

2 - 4 -

3 - - -

4 - - -

5 - 2 4,6

6 - - -

1 {1}

2 {2}

3 {3,5}

4 {4,6}

5 {5}

6 {6}

D a b c

{1} Cl(2) + Cl(3)
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4)
= {2,4,6}

Cl(4) + Cl(6)
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

49

NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

D a b c

{1} Cl(2) + Cl(3)
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4)
= {2,4,6}

Cl(4) +Cl(6)
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

A

B

C

D

A
C

B
D

a

b
b

c

Step 4:

Transition matrix

50

NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

D a b c

{1} Cl(2) + Cl(3)
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4)
= {2,4,6}

Cl(4) + Cl(6)
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

A

B

C

D

A
C

B
D

a

b
b

c

Step 5:

Initial state: closure of

initial NFA state

51

NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

D a b c

{1} Cl(2) + Cl(3)
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4)
= {2,4,6}

Cl(4) + Cl(6)
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

A

B

C

D

A
C

B
D

a

b
b

c

Step 6:

Final state(s): DFA

states “containing”

a final NFA state

Algorithm in pseudo-code: Appel, page 27

52

The Longest Token

ifz8 should be lexed as IDENTIFIER, not as two tokens IF, IDENTIFIER

Hence, the implementation

• saves the most recently encountered accepting state of the DFA

(and the corresponding stream position) and

• updates this info when passing through another accepting state

• Uses the order of rules as tie-breaker in case several tokens (of

equal length) match

Lexer should identify the longest matching token:

53

Other Useful Techniques

(generalized NFA’s: transitions may be labeled with RE’s)

(see exercise 2.7)

Summary

• Motivated use of lexer generators for
partitioning input stream into tokens

• Three formalisms for describing and
implementing lexers:

• Regular expressions

• NFA’s

• DFA’s

• Conversions RE -> NFA -> DFA

• Next lecture: practicalities of lexing
(ML-LEX)

54

55

The Compiler

56

Practicalities of lexing: ML Lex, Lex, Flex, …

57

ML Lex: lexer generator for ML (similar tools for C: lex, flex)

58

Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%

ML-LEX Definitions

%%

Rules

User declarations:

• definitions of values to be used in the action fragments of rules

• Two values must be defined in the section:

• type lexresult: type of the value returned by the rule actions

• fun eof(): function to be called by the generated lexer when

end of input stream is reached (eg call parser, print “done”)

59

Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%

ML-LEX Definitions

%%

Rules

ML-LEX Definitions:

• definitions of regular expressions abbreviations:

DIGITS=[0..9]+;

LETTER = [a-zA-Z];

• definitions of start states to permit multiple lexers to run together:

%s STATE1 STATE2 STATE3;

Example: entering “comment” mode, e.g. for supporting nested comments

60

Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%

ML-LEX Definitions

%%

Rules

Rules:

• format: <start-state-list> pattern => (action_code);

• Intuitive reading: if you’re in state mode, lex strings matching

the pattern as described by the action.

optional, states must

be defined in

ML-LEX section reg.expr

ML expression (eg construct

a token and return it to

the invoking function)

61

Rule Patterns

62

Rule Actions

63

Start States

64

Rule Matching and Start States

65

Rule Disambiguation

66

Example

67

Example in Action

