
1

Topic 1: Introduction

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

2

(Half) The Cast

Me: Lennart Beringer, Room 217 CS Building

eberinge@cs.princeton.edu, 258-0451

Office Hours: after class and by appointment

TA: Mikkel Kringelbach, Room 004 CS Building

mikkelk@cs.princeton.edu

Office Hours: TBC

(thanks to David August, David Walker, and Andrew Appel)

3

The more important half of the cast

Me: Lennart Beringer, Room 217 CS Building

eberinge@cs.princeton.edu, 258-0451

Office Hours: after class and by appointment

TA: Mikkel Kringelbach, Room 004 CS Building

mikkelk@cs.princeton.edu

Office Hours: TBC

YOU

4

What is a Compiler?

• A compiler is a program that takes a program written in
a source language and translates it into a functionally
equivalent program in a target language.

• Source Languages: C, C++, Java, FORTRAN,Haskell...

• Target Languages: x86 Assembly, Arm Assembly, C,
JVM bytecode

• Compiler can also:

• Report errors in source

• Warn of potential problems in source

• Optimize program, including parallelization eg for multi-core

5

What is a Compiler?

6

Interpreters versus compilers

I C

7

Interpreters versus compilers

I
• dynamic processing of

commands

• often: interaction loop with user

• access to stream of input (data)

• future commands/input unknown

• often: transformation of state /

top-level environment

• easy to implement/extend

• helps rapid exploration of

language features

• single execution

• little optimization potential

C

8

Interpreters versus compilers

I
• dynamic processing of

commands

• often: interaction loop with user

• access to stream of input (data)

• future commands/input unknown

• often: transformation of state /

top-level environment

• easy to implement/extend

• helps rapid exploration of

language features

• single execution

• little optimization potential

• static (i.e. compile-time)

processing program module

• programmatic interaction with user

(read/write/files,…)

• little prior knowledge of input

• entire program text is known

• goal: efficient execution

• difficult to implement/extend

• implemented for mature languages

• huge optimization potential

• effort pays off over many runs

C

9

Interpreters versus compilers

Many languages implemented in interpreters and compilers (Java, ML, ..).

Primary view affects language design. Sharing of techniques/components.

I
• dynamic processing of

commands

• often: interaction loop with user

• access to stream of input (data)

• future commands/input unknown

• often: transformation of state /

top-level environment

• easy to implement/extend

• helps rapid exploration of

language features

• single execution

• little optimization potential

• static (i.e. compile-time)

processing program module

• programmatic interaction with user

(read/write/files,…)

• little prior knowledge of input

• entire program text is known

• goal: efficient execution

• difficult to implement/extend

• implemented for mature languages

• huge optimization potential

• effort pays off over many runs

C

10

Why Learn About Compilers?

Compiler technology everywhere.

• C++  Assembly

• Assembly  Machine Code

• Microcode  microcode binary

• Interpreters: Perl, Python, Java, …

• JITs: Android Dalvik VM, Java VM, …

• Publishing: Latex  PDF  Print on Paper

• Hardware Design: HW Description  Circuit/FPGA

• Automation: Water Fountain DL  Water Display

Bellagio, Las Vegas

11

Why Learn About Compilers?

Why learn about compilers?

12

Applications,
Requirements
(performance,
security, …)

Programming
abstractions

Language
features

Compiler
technology

Processor
architecture

13

Why Learn About Compilers?

• preparatory step for later program optimizations and parallelization

• clarifies model of computation: are the above code snippets equivalent?

14

Why Learn About Compilers?

• IBM developed the first
FORTRAN compiler in 1957

• Took 18 person-years of effort

• You will be able to do it in less
than a week!

15

Why Learn About Compilers? Hardware Design

module toplevel(clock,reset);

input clock;

input reset;

reg flop1;

reg flop2;

always @ (posedge reset or posedge clock)

if (reset)

begin

flop1 <= 0;

flop2 <= 1;

end

else

begin

flop1 <= flop2;

flop2 <= flop1;

end

endmodule

Compilation I

Compilation II

16

Why Learn About Compilers?

Computer Architecture

Selectively

“harden” code

regions where

correctness is

paramount

17

Why Learn About Compilers?

Your chosen field of computer architecture effectively dead?

18

Why Learn About Compilers?

Dynamic (re-)compilation of hot spots

Interaction between compiler and runtime monitoring

19

Grading

HW assignments 40%

Exams 20% + 35%

Participation/Quizzes 5%

20

Project

Build an optimizing compiler

• Front end

• Lexer

• Parser

• Abstract Syntax Generator

• Type Checker

• Code Generator

• Back End Optimization

• MakeGraph

• Liveness

• RegAlloc

• Frame

• HW1 through 6 individual projects; HW7-HW9 probably
in small groups

21

Exams

• Exams cover concepts presented in the lecture material,
homework assignments, and required readings

• One double sided 8.5x11 page of notes allowed

Midterm Exam

• Thursday before break

• In class

Final Exam

• The final exam will be cumulative

• Time/Place determined by the Registrar

22

Quizzes

• Tuesday classes may have quizzes

• Not intended as a scare tactic – liberally graded

• Helps us assess progress of class

• Helps you to identify items you may want to revise

• Just one question (usually)

23

Participation

Negatives

• Class disruptions (snoring, email, reading a book, etc.)

• Mistreatment of TA

Positives

• Contribute questions and comments to class

• Participate in discussions in class and in Piazza

• Constructive feedback

24

Reading

• ML (optional)
• Jeffrey D. Ullman, Elements of ML Programming,

2nd Edition, Prentice Hall.

• Lawrence Paulson, ML for the working programmer

• Bob Harper’s online course book

• Required: Andrew W. Appel, Modern
Compiler Implementation in ML. Cambridge
University Press.

• CHECK ERRATA ON BOOK WEB SITES!

• Course Web Page – Off of CS page
• Project Assignments (released successively)

• Course Announcements

• Blackboard, Piazza

http://www/~appel/modern/ml/cover100.jpg
http://www/~appel/modern/ml/cover100.jpg

25

Who Am I?

Ph.D. Edinburgh:

• Thesis: Reasoning about asynchronous processors

Research Scholar at Princeton since 2009:

• interactive theorem proving (Coq)

• program verification, compiler correctness

• applications to crypto & security

Postdoc & Researcher (Edinburgh & LMU Munich)

• proof-carrying code

• resource-bounded computation

Mobile Resource

Guarantees
Mobius

26

Our Pledge to You

• Quick response to questions and issues

• Reasonable late policy

• Up to 2 days late for any single assignment without penalty

• Up to 6 days late total across assignments I through VI

• Lateness policy for HW7-9 announced later in semester

• Contact me prior to deadline for special circumstances

• Fast turn-around on grading

END OF ADMINISTRATIVE STUFF

27

It’s Tuesday

28

It’s Tuesday

29

Quiz 0: Background (use index cards)

Front:

1. Full name and Email Address above the red line

2. Major/UG or G/Year (immediately below the red line)

3. Area (G: Research Area/UG: Interests)

4. Briefly describe ML/Ocaml/Haskell experience.

5. Briefly describe any C/C++ experience.

6. Briefly describe any compiler experience.

7. In which assembly languages are you fluent?

Back:

1. Why do processors have registers?

2. What is an instruction cache?

3. Can one always convert an NFA to a DFA? (yes, no, or wha?)

