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(Half) The Cast

Me: Lennart Beringer, Room 217 CS Building

eberinge@cs.princeton.edu, 258-0451

Office Hours:  after class and by appointment

TA: Mikkel Kringelbach, Room 004 CS Building

mikkelk@cs.princeton.edu

Office Hours: TBC

(thanks to David August, David Walker, and Andrew Appel)
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The more important half of the cast

Me: Lennart Beringer, Room 217 CS Building

eberinge@cs.princeton.edu, 258-0451

Office Hours:  after class and by appointment

TA: Mikkel Kringelbach, Room 004 CS Building

mikkelk@cs.princeton.edu

Office Hours: TBC

YOU
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What is a Compiler?

• A compiler is a program that takes a program written in 
a source language and translates it into a functionally 
equivalent program in a target language.

• Source Languages: C, C++, Java, FORTRAN,Haskell...

• Target Languages: x86 Assembly, Arm Assembly, C, 
JVM bytecode

• Compiler can also:

• Report errors in source

• Warn of potential problems in source

• Optimize program, including parallelization eg for multi-core
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What is a Compiler?
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Interpreters versus compilers

I C
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Interpreters versus compilers

I
• dynamic processing of 

commands

• often: interaction loop with user

• access to stream of input (data)

• future commands/input unknown

• often: transformation of state / 

top-level environment 

• easy to implement/extend

• helps rapid exploration of 

language features

• single execution

• little optimization potential

C
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Interpreters versus compilers

I
• dynamic processing of 

commands

• often: interaction loop with user

• access to stream of input (data)

• future commands/input unknown

• often: transformation of state / 

top-level environment 

• easy to implement/extend

• helps rapid exploration of 

language features

• single execution

• little optimization potential

• static (i.e. compile-time) 

processing program module

• programmatic interaction with user 

(read/write/files,…)

• little prior knowledge of input

• entire program text is known

• goal: efficient execution

• difficult to implement/extend

• implemented for mature languages

• huge optimization potential

• effort pays off over many runs

C
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Interpreters versus compilers

Many languages implemented in interpreters and compilers (Java, ML, ..).

Primary view affects language design. Sharing of techniques/components.

I
• dynamic processing of 

commands

• often: interaction loop with user

• access to stream of input (data)

• future commands/input unknown

• often: transformation of state / 

top-level environment 

• easy to implement/extend

• helps rapid exploration of 

language features

• single execution

• little optimization potential

• static (i.e. compile-time) 

processing program module

• programmatic interaction with user 

(read/write/files,…)

• little prior knowledge of input

• entire program text is known

• goal: efficient execution

• difficult to implement/extend

• implemented for mature languages

• huge optimization potential

• effort pays off over many runs

C
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Why Learn About Compilers?

Compiler technology everywhere.

• C++  Assembly

• Assembly  Machine Code

• Microcode  microcode binary

• Interpreters: Perl, Python, Java, …

• JITs: Android Dalvik VM, Java VM, …

• Publishing: Latex  PDF  Print on Paper

• Hardware Design: HW Description  Circuit/FPGA

• Automation: Water Fountain DL  Water Display

Bellagio, Las Vegas
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Why Learn About Compilers?



Why learn about compilers?
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Applications, 
Requirements 
(performance, 
security, …)

Programming 
abstractions

Language 
features

Compiler 
technology

Processor 
architecture
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Why Learn About Compilers?

• preparatory step for later program optimizations and parallelization

• clarifies model of computation: are the above code snippets equivalent?
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Why Learn About Compilers?

• IBM developed the first 
FORTRAN compiler in 1957

• Took 18 person-years of effort

• You will be able to do it in less 
than a week!
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Why Learn About Compilers? Hardware Design

module toplevel(clock,reset);

input clock;

input reset;

reg flop1;

reg flop2;

always @ (posedge reset or posedge clock)

if (reset)

begin

flop1 <= 0;

flop2 <= 1;

end

else

begin

flop1 <= flop2;

flop2 <= flop1;

end

endmodule

Compilation I

Compilation II
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Why Learn About Compilers?

Computer Architecture

Selectively 

“harden” code 

regions where 

correctness is 

paramount
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Why Learn About Compilers?

Your chosen field of computer architecture effectively dead?
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Why Learn About Compilers?

Dynamic (re-)compilation of hot spots

Interaction between compiler and runtime monitoring
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Grading

HW assignments 40%

Exams 20% + 35%

Participation/Quizzes 5%
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Project

Build an optimizing compiler

• Front end

• Lexer

• Parser

• Abstract Syntax Generator

• Type Checker

• Code Generator

• Back End Optimization

• MakeGraph

• Liveness

• RegAlloc

• Frame

• HW1 through 6 individual projects; HW7-HW9 probably 
in small groups
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Exams

• Exams cover concepts presented in the lecture material, 
homework assignments, and required readings 

• One double sided 8.5x11 page of notes allowed

Midterm Exam

• Thursday before break

• In class

Final Exam

• The final exam will be cumulative

• Time/Place determined by the Registrar
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Quizzes

• Tuesday classes may have quizzes

• Not intended as a scare tactic – liberally graded

• Helps us assess progress of class

• Helps you to identify items you may want to revise

• Just one question (usually)
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Participation

Negatives

• Class disruptions (snoring, email, reading a book, etc.)

• Mistreatment of TA

Positives

• Contribute questions and comments to class

• Participate in discussions in class and in Piazza

• Constructive feedback
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Reading

• ML (optional)
• Jeffrey D. Ullman, Elements of ML Programming, 

2nd Edition, Prentice Hall.

• Lawrence Paulson, ML for the working programmer

• Bob Harper’s online course book

• Required: Andrew W. Appel, Modern 
Compiler Implementation in ML. Cambridge 
University Press. 

• CHECK ERRATA ON BOOK WEB SITES!

• Course Web Page – Off of CS page
• Project Assignments (released successively)

• Course Announcements

• Blackboard, Piazza

http://www/~appel/modern/ml/cover100.jpg
http://www/~appel/modern/ml/cover100.jpg
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Who Am I?

Ph.D. Edinburgh:

• Thesis: Reasoning about asynchronous processors 

Research Scholar at Princeton since 2009:

• interactive theorem proving (Coq)

• program verification, compiler correctness

• applications to crypto & security

Postdoc & Researcher (Edinburgh & LMU Munich)

• proof-carrying code 

• resource-bounded computation

Mobile Resource

Guarantees
Mobius
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Our Pledge to You

• Quick response to questions and issues

• Reasonable late policy

• Up to 2 days late for any single assignment without penalty

• Up to 6 days late total across assignments I through VI

• Lateness policy for HW7-9 announced later in semester

• Contact me prior to deadline for special circumstances

• Fast turn-around on grading

END OF ADMINISTRATIVE STUFF
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It’s Tuesday
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It’s Tuesday
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Quiz 0: Background (use index cards)

Front:

1. Full name and Email Address above the red line

2. Major/UG or G/Year (immediately below the red line)

3. Area (G: Research Area/UG: Interests)

4. Briefly describe ML/Ocaml/Haskell experience.

5. Briefly describe any C/C++ experience.

6. Briefly describe any compiler experience.

7. In which assembly languages are you fluent?

Back:

1. Why do processors have registers?

2. What is an instruction cache?

3. Can one always convert an NFA to a DFA? (yes, no, or wha?)


