Topic 1: Introduction

modern
compiler
implementation

in ML

andrew w. appel

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Y

Source Program

Lexical Analysis o

. . o

Syntax Analysis Z

T

Semantic Analysis %

IR Code Generation =
Intermediate Representation

o3 w

IR Optimization >

O

Target Code Generation 7|<

m

Target Code Optimization %

Target Program
i= (=

(Half) The Cast

Me: Lennart Beringer, Room 217 CS Building
eberinge@cs.princeton.edu, 258-0451
Office Hours: after class and by appointment

TA: Mikkel Kringelbach, Room 004 CS Building
mikkelk@cs.princeton.edu
Office Hours: TBC

(thanks to David August, David Walker, and Andrew Appel)

The more important half of the cast

Me: Lennart Beringer, Room 217 CS Building
eberinge@cs.princeton.edu, 258-0451
Office Hours: after class and by appointment

TA: Mikkel Kringelbach, Room 004 CS Building
mikkelk@cs.princeton.edu
Office Hours: TBC

YOU

What is a Compiler?

e A compileris a program that takes a program written in
a source language and translates it into a functionally
equivalent program in a target language.

e Source Languages: C, C++, Java, FORTRAN,Haskell...

e Target Languages: x86 Assembly, Arm Assembly, C,
JVM bytecode

e Compiler can also:
e Report errors in source
o Warn of potential problems in source
e Optimize program, including parallelization eg for multi-core

What is a Compiler?

Y

Source Program

Lexical Analysis
Syntax Analysis
Semantic Analysis

IR Code Generation

for (i=0; 1<20; i++) {
printf ("%d\n", 1i);
}

UNA-LNOHA

Intermediate Representation

i=20

L6:
CALL (printf,
i=14+1
if(i < 20) GOTO L6

||96d\nu ,

i)

IR Optimization
Target Code Generation

Target Code Optimization

ANd-X0Vd

Target Program

.LCO: stringz"%d\n"

addl r37 = 0, rO

addl r36 = @ltoff (.LCO), gp
.L6: br.call.sptk.many b0 = printf#

adds r37 = 1, r37
cmp4 .ge p6, p7 =
(p6)

19, r37
br.cond.dptk .L6

Interpreters versus compilers

1

Interpreters versus compilers

1

dynamic processing of
commands

often: interaction loop with user
access to stream of input (data)
future commands/input unknown
often: transformation of state /
top-level environment

easy to implement/extend

helps rapid exploration of
language features

single execution

little optimization potential

Interpreters versus compilers

1

dynamic processing of
commands

often: interaction loop with user
access to stream of input (data)
future commands/input unknown
often: transformation of state /
top-level environment

easy to implement/extend

helps rapid exploration of
language features

single execution

little optimization potential

Interpreters versus compilers

1

 dynamic processing of
commands

« often: interaction loop with user

* access to stream of input (data)

e future commands/input unknown

« often: transformation of state /
top-level environment

* easy to implement/extend

* helps rapid exploration of
language features

* single execution

« little optimization potential

Many languages implemented in interpreters and compilers (Java, ML, ..).
Primary view affects language design. Sharing of techniques/components.

9

Why Learn About Compilers?

10

Compiler technology everywhere.
e C++ > Assembly

e Assembly - Machine Code

e Microcode - microcode binary

o Interpreters: Perl, Python, Java, ... = —
e JITs: Android Dalvik VM, Java VM, ...~ °eldotasvesss
e Publishing: Latex > PDF = Print on Paper

e Hardware Design: HW Description - Circuit/FPGA

e Automation: Water Fountain DL - Water Display

Why Learn About Compilers?

11

Almost all code goes through a compiler.

Linux
e C=2558.100 lines
e x86 assembly = 12,164 lines

99.5% of Linux source goes through a compiler!

Compilers teach us about:
e Programming Languages

e Computer Architectures

Why learn about compilers?

12

Applications,

Requirements

(performance,
security, ...)

Processor Programming
architecture abstractions

Compiler Language
technology features

Why Learn About Compilers?

sum = 0;
for(i = 0; 1 < 250000; i+=4)
sum = 0; {
for(i = 0; 1 < 1000000; i++) . .
(sum = sum + big array/[i];
, , sum = sum + big array[i+l];
sum = sum + big arrayl[i]; . .
\ — sum = sum + big array[i+2];
sum = sum + big array[i+3];

 preparatory step for later program optimizations and parallelization
« clarifies model of computation: are the above code snippets equivalent?

13

Why Learn About Compilers?

14

e IBM developed the first
FORTRAN compiler in 1957

e Took 18 person-years of effort

e You will be able to do it in less
than a week!

Fortran

Why Learn About Compilers? Hardware Design

hd Ifsr. (thome/nvachhar/liberty/src/visualizer/samples/ifsr.lss)

2} Canvas Scaling: 100 — ;‘ i

P> Ifsr 4 =
@ B3 Instances: H

© g bit0: delay

@ g bitl: delay

@ o bitl_tee:tee

© g bit2: delay

© g Xor: xor_gate
@ B> Connections:

n] i
‘ o m I I atl o n I a= pit0.out[0] - > xorinl[0]
=== pijtl_tee.out[1] - > bit0.in[0] :

5= pitl.out[0] - > bitl_tee.in[0]

0
> bitZ.out[0] - > bitLin[0] ;
== bitl_tee.out[D] - > xorin0[0] |

== xor.out[0] - = bit2.in[0]

[41

module toplevel (clock, reset);
input clock;
input reset;

reg flopl;
reg flop2;

always @ (posedge reset or posedge clock)
if (reset)

begin Compilation " _ =

flopl <= 0;

flop2 <= 1; ‘
end

else
begin
flopl <= flop2;
flop2 <= flopl;
end
endmodule

Why Learn About Compilers?

16

Computer Architecture

Cosmic Flux vs. Altitude Feature Size vs. Soft Error Rate
150
10000 } / ~8% degradation/bit/genaration
eadville, —
= co 3 2014
3 5 100 (estimated)
'E nver, CO o
R s 2006
< / e 50
o __:I‘I Tucson, AZ = \
|'I.I. E
o LJNye, . . oo 0 L
X 5x 10x 180 130 90 65 45 32 22 16

Cosmic Ray Flux

Chip Feature Size (nm)

Princeton Research on Fault Tolerance wins
CGO Test of Time Award

February 2, 2015

Every year, the International Symposium on Code Generation and Optimization (CGO)
recognizes the paper appearing 10 years earlier that is judged to have had the most impact on
the field over the intervening decade. This year at CGO 2015, the paper entitled "SWIFT:
Software Implemented Fault Tolerance™ by George A. Reis, Jonathan Chang, Neil Vachharajani,
Ram Rangan, and David |. August won the award. The paper originally appeared at CGO 2005
and also won the best paper award that year at the conference. Congratulations to Princeton's
Liberty Research Group for winning this prestigious award!

Selectively
“harden” code
regions where
correctness is
paramount

Why Learn About Compilers?

Performance Improvement (logarithmic scale)

17

Your chosen field of computer architecture effectively dead?

5000 ;
2000 | Projection of
! hiStOFica| % 12,16 & 24 cores
1000 F ' X (multi—socketgweﬂ/‘
; 'performance g
500 : trend line % 6 cores (desktop)
200 ¢ i \ 4 cores (mobile)
100 | |
50 ¢ ; v
: =z / . A 5 ST : [}
20 | i ONTolEn, A 5 ° Actual,
10 25 R i % flattened
; & g A |
| i o ! performance
; ; ° trend line
9! |
1
0.5 | i
: x Our Technology
0.2 5 CPU92
01l | CPU95
; ; CPU2000
0.05 | | o CPU2006
0.02 | i

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Year

Why Learn About Compilers?

Interpret until :
next potential Dalvik Trace JIT Flow
trace head
! | " |
° Translation Cache
Update profile
count for this _ —
Iocation i Translation
A Translation
anNn>:0I1D Exit 0
Exit 0 P Exit1 @
Interpret/build 0 Xlation es Exit 1
trace request exists?
i Submit compilation
M reguest
Translation
Compiler Thread > i ®
Exit 1 .—_
>
Google {i(®)

Dynamic (re-)compilation of hot spots

Interaction between compiler and runtime monitoring

Grading

19

HW assignments

Exams 20% + 35%
Participation/Quizzes 5%

Project

20

Build an optimizing compiler
e Front end

o Lexer

e Parser
Abstract Syntax Generator
Type Checker
e Code Generator

e Back End Optimization
e MakeGraph
e Liveness
e RegAlloc
e Frame
e HWI1 through 6 individual projects; HW/7-HW9 probably
in small groups

Exams

21

e Exams cover concepts presented in the lecture material,
homework assignments, and required readings

e One double sided 8.5x11 page of notes allowed

Midterm Exam
e Thursday before break
e In class

Final Exam
e The final exam will be cumulative
e Time/Place determined by the Registrar

Quizzes

e Tuesday classes may have quizzes

e Not intended as a scare tactic — liberally graded

e Helps us assess progress of class

e Helps you to identify items you may want to revise
e Just one question (usually)

| L

Participation

23

Negatives
e (lass disruptions (snoring, email, reading a book, etc.)
e Mistreatment of TA

Positives

e Contribute questions and comments to class

e Participate in discussions in class and in Piazza
e Constructive feedback

Reading

24

ML (optional)
o Jeffrey D. Ullman, Elements of ML Programming,
2nd Edition, Prentice Hall.

e Lawrence Paulson, ML for the working programmer
e Bob Harper’s online course book

Required: Andrew W. Appel, Modern
Compiler Implementation in ML. Cambridge
University Press.

CHECK ERRATA ON BOOK WEB SITES!

Course Web Page — Off of CS page

e Project Assignments (released successively)
e Course Announcements

e Blackboard, Piazza

ML97 EDITION

ELEMENTS OF

‘ML PROGRAMMING

compiler
implementation
in VL

andreuw ‘w. appel

http://www/~appel/modern/ml/cover100.jpg
http://www/~appel/modern/ml/cover100.jpg

Who Am 1?

Research Scholar at Princeton since 2009:
e interactive theorem proving (Coq)
e program verification, compiler correctness

Verified o gpplications to crypto & security
Toolchain

Software

Postdoc & Researcher (Edinburgh & LMU Munich) i
e proof-carrying code LMIU b ersse

e resource-bounded computation

Mobile Resource
MRO;
SRR Guarantees

Py A

Mobius

Ph.D. Edinburgh:

e Thesis: Reasoning about asynchronous processors

25

Our Pledge to You

e Quick response to questions and issues

e Reasonable late policy
e Up to 2 days late for any single assignment without penalty
e Up to 6 days late total across assignments I through VI
e Lateness policy for HW7-9 announced later in semester
e Contact me prior to deadline for special circumstances

e Fast turn-around on grading

END OF ADMINISTRATIVE STUFF

26

It's Tuesday

It's Tuesday

28

T
R NRRE R AR

Quiz 0: Background (use index cards)

Front:

Full name and Email Address above the red line
Major/UG or G/Year (immediately below the red line)
Area (G: Research Area/UG: Interests)

Briefly describe ML/Ocaml/Haskell experience.

Briefly describe any C/C++ experience.

Briefly describe any compiler experience.

In which assembly languages are you fluent?

Back:

1. Why do processors have registers?

2. What is an instruction cache?

3. Can one always convert an NFA to a DFA? (yes, no, or wha?)

NOoO U AW

29

