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Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Techniques for program verification
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Famous Bugs

The first bug: A moth in a relay (1945)
At the Smithsonian (currently not on display)



(in)Famous Bugs

• Safety-critical systems 

Therac-25 medical radiation device (1985)
At least 5 deaths attributed to a race condition in software



(in)Famous Bugs

• Mission-critical systems 

Ariane-5 self-destruction (1995)
SW interface issue, backup failed
Cost: $400M payload 

The Northeast Blackout (2003)
Race condition in power control software
Cost: $4B



(in)Famous Bugs

• Commodity hardware / software

Pentium bug (1994)
Float computation errors
Cost: $475M

Code Red worm on MS IIS server (2001)
Buffer overflow exploited by worm
Infected 359k servers
Cost: >$2B



Common Bugs

• Runtime bugs
• Null pointer dereference (access via a pointer that is Null)
• Array buffer overflow (out of bound index)

• Can lead to security vulnerabilities
• Uninitialized variable
• Division by 0

• Concurrency bugs 
• Race condition (flaw in accessing a shared resource)
• Deadlock (no process can make progress)

• Functional correctness bugs
• Input-output relationships 
• Interface properties
• Data structure invariants 
• …
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Program Verification

Ideally:  Prove that any given program is correct

General
Program
Checkerprogram.c

Right or Wrong
Specification

?
In general: Undecidable

This lecture: For some (kinds of) properties, a Program Verifier 
can provide a proof (if right) or a counterexample (if wrong)
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Program Testing (Lecture 6)

Pragmatically:  Convince yourself that a specific 
program probably works

“Program testing can be quite effective for showing the presence 
of bugs, but is hopelessly inadequate for showing their absence.”

‒ Edsger Dijkstra

Specific
Testing

Strategyprogram.c

Probably Right
or 

Certainly Wrong

Specification
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Path Testing Example (Lecture 6)
Example pseudocode:

• Simple programs => maybe reasonable
• Complex program => combinatorial explosion!!!

• Path test code fragments

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Path testing:

Should make sure all logical 
paths are executed

How many passes 
through code are 
required?

Four paths for four combinations of 
(condition1, condition 2): TT, TF, FT, FF



Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Techniques for program verification
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Reasoning about Programs

• Try out the program, say for x=3
• At line 4, before executing the loop: x=3, y=1, z=0
• Since z != x, we will execute the while loop
• At line 4, after 1st iteration of loop: x=3, z=1, y=1
• At line 4, after 2nd iteration of loop: x=3, z=2, y=2
• At line 4, after 3rd iteration of loop: x=3, z=3, y=6
• Since z == x, exit loop, return 6: It works!

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  
(fac is the mathematical function)



Reasoning about Programs

• Try out the program, say for x=4
• At line 4, before executing the loop: x=4, y=1, z=0
• Since z != x, we will execute the while loop
• At line 4, after 1st iteration of loop: x=4, z=1, y=1
• At line 4, after 2nd iteration of loop: x=4, z=2, y=2
• At line 4, after 3rd iteration of loop: x=4, z=3, y=6
• At line 4, after 4th iteration of loop: x=4, z=4, y=24
• Since z == x, exit loop, return 24: It works!

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  



Reasoning about Programs

• Try out the program, say for x=1000
• At line 4, before executing the loop: x=1000, y=1, z=0
• Since z != x, we will execute the while loop
• At line 4, after 1st iteration of loop: x=1000, z=1, y=1
• At line 4, after 2nd iteration of loop: x=1000, z=2, y=2
• At line 4, after 3rd iteration of loop: x=1000, z=3, y=6
• At line 4, after 4th iteration of loop: x=1000, z=4, y=24 … 

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Want to keep going on???

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  



Lets try some mathematics …

• Annotate the program with assertions [Floyd 67]
• Assertions (at program lines) are expressed as (logic) formulas 

• Here, we will use standard arithmetic
• Meaning: Assertion is true before that line is executed

• E.g., at line 3, assertion y=1 is true

• For loops, we will use an assertion called a loop invariant
• Invariant means that the assertion is true in each iteration of loop

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  



Loop Invariant

• Loop invariant (assertion at line 4): y = fac(z) 

• Try to prove by induction that the loop invariant holds

• Use induction over n, the number of loop iterations

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  



Aside: Mathematical Induction
Example: 

• Prove that sum of first n natural numbers = n * (n+1) / 2

Solution: Proof by induction
• Base case: Prove the claim for n=1

• LHS = 1, RHS = 1 * 2 / 2 = 1, claim is true for n=1
• Inductive hypothesis: Assume that claim is true for n=k

• i.e., 1 + 2 + 3 + … k = k * (k+1) / 2
• Induction step: Now prove that the claim is true for n=k+1

• i.e., 1 + 2 + 3 + … k + (k+1) = (k+1) * (k+2) / 2
LHS = 1 + 2 + 3 + ... k + (k+1)
= (k * (k+1))/2 + (k+1)    … by using the inductive hypothesis
= (k * (k+1))/2 + 2*(k+1)/2
= ((k+2) * (k+1)) / 2 
= RHS

• Therefore, claim is true for all n



Loop Invariant

• Loop invariant (assertion at line 4): y = fac(z) 

• Try to prove by induction that the loop invariant holds
• Base case: First time at line 4, z=0, y=1, fac(0)=1, y=fac(z) holds √
• Induction hypothesis: Assume that y = fac(z) at line 4
• Induction step: In next iteration of the loop (when z!=x)

• z’ = z+1 and y’= fac(z)*z+1 = fac(z’)      (z’/y’ denote updated values)
• Therefore, at line 4, y’=fac(z’), i.e., loop invariant holds again √

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  



Proof of Correctness

• We have proved the loop invariant (assertion at line 4): y = fac(z) √

• What should we do now?
• Case analysis on loop condition
• If loop condition is true, i.e., if (z!=x), execute loop again, y=fac(z)
• If loop condition is false, i.e., if (z==x), exit the loop

• At line 8, we have y=fac(z) AND z==x, i.e., y=fac(x)
• Thus, at return, y = fac(x)

• Proof of correctness of the factorial program is now done √

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example: 
factorial program

Check: 
If x >= 0, then y = fac(x)  



Program Verification
• Rich history in computer science 
• Assigning Meaning to Programs [Floyd, 1967]

• Program is annotated with assertions (formulas in logic)
• Program is proved correct by reasoning about assertions

• An Axiomatic Basis for Computer Programming [Hoare, 1969]
• Hoare Triple: {P} S {Q}

• S: program fragment
• P: precondition (formula in logic)
• Q: postcondition (formula in logic)

• Meaning: If S executes from a state where P is true, and if S 
terminates, then Q is true in the resulting state 

• This is called “partial correctness”
• Note: does not guarantee termination of S

• For our example: {x >= 0}  y = factorial(x); {y = fac(x)}



Program Verification
• Proof Systems

• Perform reasoning using logic formulas and rules of inference

• Hoare Logic                                                         [Hoare 69]
• Inference rules for assignments, conditionals, loops, sequence
• Given a program annotated with preconditions, postconditions, and 

loop invariants
• Generate Verification Conditions (VCs) automatically
• If each VC is “valid”, then program is correct
• Validity of VC can be checked by a theorem-prover

• Question: Can these preconditions/postconditions/loop 
invariants be generated automatically?     



Automatic Program Verification

• Question: Can these preconditions/postconditions/loop 
invariants be generated automatically?     

• Answer: Yes!  (in many cases)

• Techniques for deriving the assertions automatically
• Model checkers: based on exploring “states” of programs
• Static analyzers: based on program analysis using “abstractions” of 

programs
• … many other techniques

• Still an active area of research (after more than 45 years)! 



Model Checking

• Temporal logic
• Used for specifying correctness properties
• [Pnueli, 1977]

• Model checking
• Verifying temporal logic properties by state space exploration
• [Clarke & Emerson, 1981] and [Queille & Sifakis, 1981]



Model Checker
• Model checker performs automatic state space exploration

• If all reachable states are visited and error state is not reached, 
then property is proved correct

• Otherwise, it provides a counterexample (trace to error state)

Property:	formula
Is	error	 state	reachable?	
(Example:	error	 state	is	where	y	!=	fac(x)	at	return)

Model	
Checker

Property	holds

Property	fails

Proof

Counterexample

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 } (may run out of memory)



F-Soft
1: void pivot_sort(int A[], int n){
2: int pivot=A[0], low=0, high=n;
3: while ( low < high ) {
4: do {
5: low++ ;
6: } while ( A[low] <= pivot ) ;
7: do {
8: high - - ;
9: } while ( A[high] >= pivot );

10: swap(&A[low],&A[high]);
11: }
12: }

Array Buffer Overflow? 

Line 1: n=2, A[0]=10, A[1]=10
Line 2: pivot=10, low=0, high=2

Line 5: low = 1
Line 6: A[low] <= pivot ?      YES

Line 3: low < high ?               YES

Line 5: low = 2
Line 6: A[low] <= pivot ? 

Buffer Overflow!!!

counterexample trace

F-Soft Model Checker
Automatic tool for finding bugs in large C/C++ programs (NEC) 



Summary
• Program verification

• Provide proofs of correctness for programs
• Testing cannot provide proofs of correctness (unless exhaustive)

• Proof systems based on logic                           
• Users annotate the program with assertions (formulas in logic)
• Theorem-provers perform search for proofs of correctness

• Automatic verification techniques
• Program assertions are derived automatically
• Model checkers can find proofs and generate counterexamples

Active area of research!
COS 516 in Fall ’16: Automatic Reasoning about Software

COS 510 in Spring ’17: Programming Languages



The Rest of the Course

Assignment 7
• Due on Dean’s Date at 5 PM
• Cannot submit late (University regulations)
• Cannot use late pass

Office hours and exam prep sessions
• Will be announced on Piazza

Final exam
• When: Friday 5/20, 1:30 PM – 4:30 PM
• Where: Friend Center 101, Friend Center 108
• Closed book, 1-sheet notes, no electronic devices
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Thank you!



Course Summary
We have covered:

Programming in the large
• The C programming language
• Testing
• Building
• Debugging
• Program & programming style
• Data structures
• Modularity
• Performance
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Course Summary
We have covered (cont.):

Under the hood
• Number systems
• Language levels tour

• Assembly language
• Machine language
• Assemblers and linkers

• Service levels tour
• Exceptions and processes
• Storage management
• Dynamic memory management
• Process management
• I/O management
• Signals
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