
1

Dynamic Memory
Management



Goals of this Lecture

Help you learn about:
• The need for dynamic* memory management (DMM)
• Implementing DMM using the heap section
• Implementing DMM using virtual memory

* During program execution

2



System-Level Functions Covered
As noted in the Exceptions and Processes lecture…

Linux system-level functions for dynamic memory 
management (DMM)

3

Number Function Description
12 brk() Move the program break, thus changing the 

amount of memory allocated to the HEAP
12 sbrk() (Variant of previous)

9 mmap() Map a virtual memory page

11 munmap() Unmap a virtual memory page



Goals for DMM

Goals for effective DMM:
• Time efficiency

• Allocating and freeing memory should be fast
• Space efficiency

• Pgm should use little memory

Note
• Easy to reduce time or space
• Hard to reduce time and space

4



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 5



Why Allocate Memory Dynamically?

Why allocate memory dynamically?

Problem
• Unknown object size

• E.g. unknown element count in array
• E.g. unknown node count in linked list or tree

• How much memory to allocate?

Solution 1
• Guess!

Solution 2
• Allocate memory dynamically

6



Why Free Memory Dynamically?

Why free memory dynamically?

Problem
• Pgm should use little memory, i.e.
• Pgm should map few pages of virtual memory

• Mapping unnecessary VM pages bloats page tables, 
wastes memory/disk space

Solution
• Free dynamically allocated memory that is no longer 

needed

7



Option 1: Automatic Freeing

Run-time system frees unneeded memory
• Java, Python, …
• Garbage collection

Pros:
• Easy for programmer

Cons:
• Performed constantly => overhead
• Performed periodically => unexpected pauses

8

Car c;
Plane p;
...
c = new Car();
p = new Plane();
...
c = new Car();
...

Original Car 
object can’t 
be accessed



Option 2: Manual Freeing

Programmer frees unneeded memory
• C, C++, Objective-C, …

Pros
• No overhead
• No unexpected pauses 

Cons
• More complex for programmer
• Opens possibility of memory-related bugs

• Dereferences of dangling pointers, double frees, 
memory leaks

We’ll focus on manual freeing
9



Standard C DMM Functions

Standard C DMM functions:

Collectively define a dynamic memory manager (DMMgr)

We’ll focus on malloc() and free()

10

void *malloc(size_t size);
void  free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);



Implementing malloc() and free()

Question:
• How to implement malloc() and free()?
• How to implement a DMMgr?

Answer 1:
• Use the heap section of memory

Answer 2:
• (Later in this lecture)

11



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 12



The Heap Section of Memory

13

Supported by Unix/Linux, MS Windows, …

Heap start is stable
Program break points to end
At process start-up, heap start == program break
Can grow dynamically

By moving program break to higher address
Thereby (indirectly) mapping pages of virtual mem

Can shrink dynamically
By moving program break to lower address
Thereby (indirectly) unmapping pages of virtual mem

Heap start Program break

Low
memory

High
memory



Unix Heap Management
Unix system-level functions for heap mgmt:

int brk(void *p);
• Move the program break to address p
• Return 0 if successful and -1 otherwise

void *sbrk(intptr_t n);
• Increment the program break by n bytes
• If n is 0, then return the current location of the program break
• Return 0 if successful and (void*)-1 otherwise
• Beware: On Linux has a known bug (overflow not handled); 

should call only with argument 0.

Note: minimal interface (good!)
14



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 15



Minimal Impl

Data structures
• None!

Algorithms (by examples)…

16



Minimal Impl malloc(n) Example

17

p

Call sbrk(0) to determine current program break (p)

p

n bytes

Call brk(p+n) to increase heap size

p

n bytes

Return p



Minimal Impl free(p) Example

18

Do nothing!



Minimal Impl

Algorithms

19

void *malloc(size_t n)

{  char *p = sbrk(0);

if (brk(p + n) == -1)

return NULL;

return p;

}

void free(void *p)

{

}



Minimal Impl Performance

Performance (general case)
• Time: bad

• Two system calls per malloc()
• Space: bad

• Each call of malloc() extends heap size
• No reuse of freed chunks

20



What’s Wrong?

Problem
•malloc() executes two system calls

Solution
• Redesign malloc() so it does fewer system calls
• Maintain a pad at the end of the heap…

21



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 22



Pad Impl
Data structures

•pBrk: address of end of heap (i.e. the program break)
•pPad: address of beginning of pad

Algorithms (by examples)…
23

inuse

pPad

pad

pBrk

char *pPad = NULL;

char *pBrk = NULL;



Pad lmpl malloc(n) Example 1

24

Are there at least n bytes between pPad and pBrk? Yes!
Save pPad as p; add n to pPad

pPad

≥ n bytes

pBrk

Return p
p pBrk

n bytes

pPad

p pBrk

n bytes

pPad



Pad lmpl malloc(n) Example 2

25

Are there at least n bytes between pPad and pBrk? No!
Call brk() to allocate (more than) enough additional memory

pPad

< n bytes

pBrk

Set pBrk to new program break

pBrk

≥ n bytes

pPad

Proceed as previously!

pBrk

≥ n bytes

pPad



Pad Impl free(p) Example

26

Do nothing!



Pad Impl

Algorithms

27

inuse

pPad

pad

pBrk

void *malloc(size_t n)

{  enum {MIN_ALLOC = 8192};

char *p;

char *pNewBrk;

if (pBrk == NULL)

{  pBrk = sbrk(0);

pPad = pBrk;

}

if (pPad + n > pBrk) /* move pBrk */

{  pNewBrk = 

max(pPad + n, pBrk + MIN_ALLOC);

if (brk(pNewBrk) == -1) return NULL;

pBrk = pNewBrk;

}

p = pPad;

pPad += n;

return p;

}

void free(void *p)

{

}



Pad Impl Performance

Performance (general case)
• Time: good
• malloc() calls sbrk() initially
• malloc() calls brk() infrequently thereafter

• Space: bad
• No reuse of freed chunks

28



What’s Wrong?

Problem
•malloc() doesn’t reuse freed chunks

Solution
•free() marks freed chunks as “free”
•malloc() uses marked chunks whenever possible
•malloc() extends size of heap only when necessary

29



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 30



Fragmentation

31

DMMgr must be concerned about fragmentation…

inuse free

At any given time, some heap memory chunks are
in use, some are marked “free”



Internal Fragmentation

32

Internal fragmentation: waste within chunks
Example

Generally
Program asks for n bytes
DMMgr provides chunk of size n+Δ bytes
Δ bytes wasted

Space efficiency =>
DMMgr should reduce internal fragmentation

100 bytes

Client asks for 90 bytes
DMMgr provides chunk of size 100 bytes
10 bytes wasted



External Fragmentation

33

External fragmentation: waste between chunks
Example

Generally
Program asks for n bytes
n bytes are available, but not contiguously
DMMgr must extend size of heap to satisfy request

Space efficiency =>
DMMgr should reduce external fragmentation

100 bytes

Client asks for 150 bytes
150 bytes are available, but not contiguously
DMMgr must extend size of heap

50 bytes



DMMgr Desired Behavior Demo

34

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);



DMMgr Desired Behavior Demo

35

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1



DMMgr Desired Behavior Demo

36

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2



DMMgr Desired Behavior Demo

37

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3



DMMgr Desired Behavior Demo

38

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

External fragmentation occurred



DMMgr Desired Behavior Demo

39

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

p4



DMMgr Desired Behavior Demo

40

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

p4

DMMgr coalesced two free chunks



DMMgr Desired Behavior Demo

41

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

DMMgr reused previously freed chunk



DMMgr Desired Behavior Demo

42

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4



DMMgr Desired Behavior Demo

43

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4



DMMgr Desired Behavior Demo

44

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4



DMMgr Desired Behavior Demo

DMMgr cannot:
• Reorder requests

• Client may allocate & free in arbitrary order
• Any allocation may request arbitrary number of bytes

• Move memory chunks to improve performance
• Client stores addresses
• Moving a memory chunk would invalidate client 

pointer!

Some external fragmentation is unavoidable

45



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 46



List Impl
Data structures

Algorithms (by examples)… 47

Free list contains all free chunks
In order by mem addr

Each chunk contains header & payload
Payload is used by client
Header contains chunk size & (if free) addr of next chunk in free list

size

header

chunk

Next chunk in free list

payload

Free list



List Impl: malloc(n) Example 1

48

Search list for big-enough chunk
Note: first-fit (not best-fit) strategy

Found & reasonable size =>
Remove from list and return payload

< n >= n
too small reasonable

Free list

< n >= n
return this

Free list



List Impl: malloc(n) Example 2

49

Search list for big-enough chunk
Found & too big =>

Split chunk, return payload of tail end
Note: Need not change links

< n >> n
too small too big

Free list

< n n
return this

Free list



List Impl: free(p) Example

50

Search list for proper insertion spot
Insert chunk into list
(Not finished yet!)

free this

Free list

Free list



List Impl: free(p) Example (cont.)

51

Look at current chunk
Next chunk in memory == next chunk in list =>

Remove both chunks from list
Coalesce
Insert chunk into list

(Not finished yet!)

current
chunk

Free list

Free list

next chunk 
In list

coalesced chunk



List Impl: free(p) Example (cont.)

52

Look at prev chunk in list
Next in memory == next in list =>

Remove both chunks from list
Coalesce
Insert chunk into list

(Finished!)

prev chunk
in list

Free list

Free list

current chunk

coalesced chunk



List Impl: malloc(n) Example 3

53

Search list for big-enough chunk
None found =>

Call brk() to increase heap size
Insert new chunk at end of list

(Not finished yet!)

too small too small

Free list

≥ n
new large 
chunk

Free list
too small



List Impl: malloc(n) Example 3 (cont.)

54

Look at prev chunk in list
Next chunk memory == next chunk in list =>

Remove both chunks from list
Coalesce
Insert chunk into list

Then proceed to use the new chunk, as before
(Finished!)

prev chunk
In list

≥ n
new large 
chunk

Free list

≥ n
new large 
chunk

Free list



List Impl
Algorithms (see precepts for more precision)

malloc(n)
• Search free list for big-enough chunk
• Chunk found & reasonable size => remove, use
• Chunk found & too big => split, use tail end
• Chunk not found => increase heap size, create new chunk
• New chunk reasonable size => remove, use
• New chunk too big => split, use tail end

free(p)
• Search free list for proper insertion spot
• Insert chunk into free list
• Next chunk in memory also free => remove both, coalesce, insert
• Prev chunk in memory free => remove both, coalesce, insert

55



List Impl Performance
Space

• Some internal & external fragmentation is unavoidable
• Headers are overhead
• Overall: good

Time: malloc()
• Must search free list for big-enough chunk
• Bad:  O(n)
• But often acceptable

Time: free()
• Must search free list for insertion spot
• Bad:  O(n)
• Often very bad 56



What’s Wrong?

Problem
•free() must traverse (long) free list, so can be (very) 

slow

Solution
• Use a doubly-linked list…

57



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 58



Doubly-Linked List Impl
Data structures

59

Free list is doubly-linked
Each chunk contains header, payload, footer
Payload is used by client
Header contains status bit, chunk size, & (if free) addr of next chunk in list
Footer contains redundant chunk size & (if free) addr of prev chunk in list
Free list is unordered

1
size

header

chunk

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status bit:
0 => free
1 => in use



Doubly-Linked List Impl

Typical heap during program execution:

60

Free list



Doubly-Linked List Impl
Algorithms (see precepts for more precision)

malloc(n)
• Search free list for big-enough chunk
• Chunk found & reasonable size => remove, set status, use
• Chunk found & too big => remove, split, insert tail, set status, use 

front
• Chunk not found => increase heap size, create new chunk, insert
• New chunk reasonable size => remove, set status, use
• New chunk too big => remove, split, insert tail, set status, use front

61



Doubly-Linked List Impl

Algorithms (see precepts for more precision)

free(p)
• Set status
• Search free list for proper insertion spot
• Insert chunk into free list
• Next chunk in memory also free => remove both, coalesce, insert
• Prev chunk in memory free => remove both, coalesce, insert

62



Doubly-Linked List Impl Performance
Consider sub-algorithms of free()…

Insert chunk into free list
• Linked list version: slow

• Traverse list to find proper spot
• Doubly-linked list version: fast

• Insert at front!

Remove chunk from free list
• Linked list version: slow

• Traverse list to find prev chunk in list
• Doubly-linked list version: fast

• Use backward pointer of current chunk to find prev 
chunk in list 63



Doubly-Linked List Impl Performance
Consider sub-algorithms of free()…

Determine if next chunk in memory is free
• Linked list version: slow

• Traverse free list to see if next chunk in memory is in list
• Doubly-linked list version: fast

64

current next

Use current chunk’s size to find next chunk
Examine status bit in next chunk’s header

Free list



Doubly-Linked List Impl Performance
Consider sub-algorithms of free()…

Determine if prev chunk in memory is free
• Linked list version: slow

• Traverse free list to see if prev chunk in memory is in list
• Doubly-linked list version: fast

65

currentprev

Fetch prev chunk’s size from its footer
Do ptr arith to find prev chunk’s header
Examine status bit in prev chunk’s header

Free list



Doubly-Linked List Impl Performance

Observation:
• All sub-algorithms of free() are fast
•free() is fast!

66



Doubly-Linked List Impl Performance
Space

• Some internal & external fragmentation is unavoidable
• Headers & footers are overhead
• Overall: Good

Time: free()
• All steps are fast
• Good:  O(1)

Time: malloc()
• Must search free list for big-enough chunk
• Bad:  O(n)
• Often acceptable
• Subject to bad worst-case behavior

• E.g. long free list with big chunks at end

67



What’s Wrong?

Problem
•malloc() must traverse doubly-linked list, so can be 

slow

Solution
• Use multiple doubly-linked lists (bins)…

68



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 69



Data structures

Bins Impl

70

Use an array; each element is a bin
Each bin is a doubly-linked list of free chunks

As in previous implementation
bin[i] contains free chunks of size i

Exception: Final bin contains chunks of size MAX_BIN or larger

(More elaborate binning schemes are common)

Doubly-linked list containing free chunks of size 10

…

…

Doubly-linked list containing free chunks of size 11

Doubly-linked list containing free chunks of size 12

10

11

12

MAX_BIN Doubly-linked list containing free chunks of size >= MAX_BIN

…



Bins Impl
Algorithms (see precepts for more precision)

malloc(n)
• Search free list proper bin(s) for big-enough chunk
• Chunk found & reasonable size => remove, set status, use
• Chunk found & too big => remove, split, insert tail, set status, use 

front
• Chunk not found => increase heap size, create new chunk
• New chunk reasonable size => remove, set status, use
• New chunk too big => remove, split, insert tail, set status, use front

free(p)
• Set status
• Insert chunk into free list proper bin 
• Next chunk in memory also free => remove both, coalesce, insert
• Prev chunk in memory free => remove both, coalesce, insert

71



Bins Impl Performance
Space

• Pro: For small chunks, uses best-fit (not first-fit) strategy
• Could decrease internal fragmentation and splitting

• Con: Some internal & external fragmentation is unavoidable
• Con: Headers, footers, bin array are overhead
• Overall: good

Time: malloc()
• Pro: Binning limits list searching

• Search for chunk of size i begins at bin i and proceeds downward
• Con: Could be bad for large chunks (i.e. those in final bin)

• Performance degrades to that of list version
• Overall: good O(1)

Time: free()
• Good:  O(1)

72



DMMgr Impl Summary (so far)

Implementation Space Time
(1) Minimal Bad Malloc: Bad

Free: Good
(2) Pad Bad Malloc: Good

Free: Good
(3) List Good Malloc: Bad (but could be OK)

Free: Bad
(4) Doubly-Linked

List
Good Malloc: Bad (but could be OK)

Free: Good
(5) Bins Good Malloc: Good

Free: Good

73

Assignment 6:  Given (3), compose (4) and (5)



74

What’s Wrong?
Observations

• Heap mgr might want to free memory chunks by 
unmapping them rather than marking them
• Minimizes virtual page count

• Heap mgr can call brk(pBrk–n) to decrease heap size
• And thereby unmap heap memory

• But often memory to be unmapped is not at high end of 
heap!

Problem
• How can heap mgr unmap memory effectively?

Solution
• Don’t use the heap!



75

What’s Wrong?
Reprising a previous slide…

Question:
• How to implement malloc() and free()?
• How to implement a DMMgr?

Answer 1:
• Use the heap section of memory

Answer 2:
• Make use of virtual memory concept…



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 76



Unix VM Mapping Functions
Unix allows application programs to map/unmap VM 

explicitly
void *mmap(void *p, size_t n, int prot, int flags, int 
fd, off_t offset);
• Creates a new mapping in the virtual address space of the calling 

process
• p: the starting address for the new mapping
• n: the length of the mapping
• If p is NULL, then the kernel chooses the address at which to create 

the mapping; this is the most portable method of creating a new 
mapping

• On success, returns address of the mapped area

int munmap(void *p, size_t n);
• Deletes the mappings for the specified address range 

77



78

Unix VM Mapping Functions
Typical call of mmap() for allocating memory

p = mmap(NULL, n, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANON, 0, 0);

• Asks OS to map a new read/write area of virtual memory containing 
n bytes

• Returns the virtual address of the new area on success, (void*)-1 
on failure

Typical call of munmap()
status = munmap(p, n);
• Unmaps the area of virtual memory at virtual address p consisting of 
n bytes

• Returns 0 on success, -1 on failure

See Bryant & O’Hallaron book and man pages for details



Agenda
The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: Doubly-linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 79



VM Mapping Impl
Data structures

80

size

header

chunk

payload

Each chunk consists of a header and payload
Each header contains size



VM Mapping Impl
Algorithms

81

void *malloc(size_t n)

{  size_t *p;

if (n == 0) return NULL;

p = mmap(NULL, n + sizeof(size_t), PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);

if (p == (void*)-1) return NULL;

*p = n + sizeof(size_t);  /* Store size in header */

p++;  /* Move forward from header to payload */

return p;

}

void free(void *p)

{  if (p == NULL) return;

p--;  /* Move backward from payload to header */

munmap(p, *p);

}



VM Mapping Impl Performance
Space

• Fragmentation problem is delegated to OS
• Overall: Depends on OS

Time
• For small chunks

• One system call (mmap()) per call of malloc()
• One system call (munmap()) per call of free()
• Overall: poor

• For large chunks
• free() unmaps (large) chunks of memory, and so 

shrinks page table
• Overall: maybe good!

82



The GNU Implementation
Observation
•malloc() and free() on CourseLab are from the

GNU (the GNU Software Foundation)

Question
• How are GNU malloc() and free() implemented?

Answer
• For small chunks

• Use heap (sbrk() and brk())
• Use bins implementation

• For large chunks
• Use VM directly (mmap() and munmap())

83



Summary
The need for DMM

• Unknown object size

DMM using the heap section
• On Unix: sbrk() and brk()
• Complicated data structures and algorithms
• Good for managing small memory chunks

DMM using virtual memory
• On Unix: mmap() and munmap()
• Good for managing large memory chunks

See Appendix for additional approaches/refinements
84



Appendix: Additional Approaches

Some additional approaches to dynamic memory mgmt…

85



Selective Splitting

Observation
• In previous implementations, malloc() splits whenever 

chosen chunk is too big

Alternative: selective splitting
• Split only when remainder is above some threshold

Pro
• Reduces external fragmentation

Con
• Increases internal fragmentation

86

In
use

In
use



Deferred Coalescing

Observation
• Previous implementations do coalescing whenever 

possible

Alternative: deferred coalescing
• Wait, and coalesce many chunks at a later time

Pro
• Handles malloc(n);free();malloc(n) sequences 

well

Con
• Complicates algorithms

87

In
use

In
use



88

Segregated Data

Observation
• Splitting and coalescing consume lots of overhead

Problem
• How to eliminate that overhead?

Solution: segregated data
• Make use of the virtual memory concept…
• Use bins
• Store each bin’s chunks in a distinct (segregated) virtual 

memory page
• Elaboration…



89

Segregated Data

Segregated data
• Each bin contains chunks of fixed sizes

• E.g. 32, 64, 128, …
• All chunks within a bin are from same virtual memory

page
•malloc() never splits!  Examples:
• malloc(32) => provide 32
• malloc(5) => provide 32
• malloc(100) => provide 128

•free() never coalesces!
• Free block => examine address, infer virtual memory 

page, infer bin, insert into that bin



Segregated Data

Pros
• Eliminates splitting and coalescing overhead
• Eliminates most meta-data; only forward links required

• No backward links, sizes, status bits, footers

Con
• Some usage patterns cause excessive external 

fragmentation
• E.g. Only one malloc(32) wastes all but 32 bytes of 

one virtual page

90



91

Segregated Meta-Data
Observations

• Meta-data (chunk sizes, status flags, links, etc.) are scattered across 
the heap, interspersed with user data

• Heap mgr often must traverse meta-data

Problem 1
• User error easily can corrupt meta-data

Problem 2
• Frequent traversal of meta-data  can cause excessive page faults 

(poor locality)

Solution: segregated meta-data
• Make use of the virtual memory concept…
• Store meta-data in a distinct (segregated) virtual memory page from 

user data


