

Sampling, Resampling, and Warping

COS 426, Spring 2015 Adam Finkelstein

Image Processing Operations I

- Luminance
 - **Brightness**
 - Contrast.
 - Gamma

- Linear filtering
 - Blur & sharpen
 - Edge detect
- Convolution
- Histogram equalizations Von-linear filtering
- Color /ledian Black & white hursda
 - ateral filter
 - Saturation
 - White balance

- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

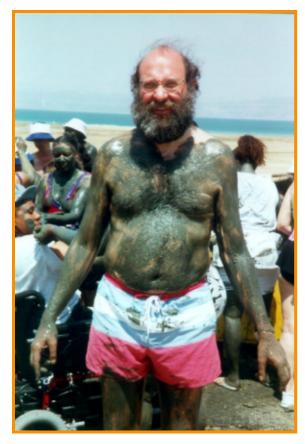
Image Processing Operations II

- Transformation
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
 - Comp photo

Today

Thursday guest: Tom Funkhouser

Move pixels of an image



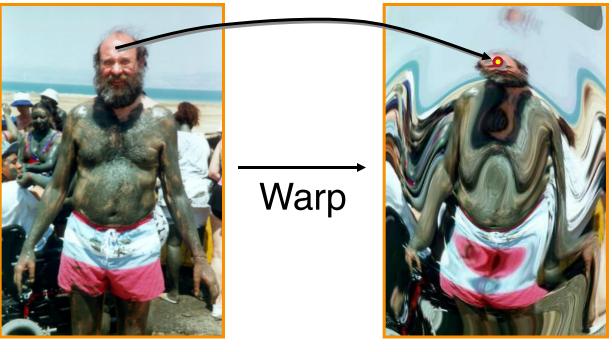
Source image

Warp

Destination image

Issues:

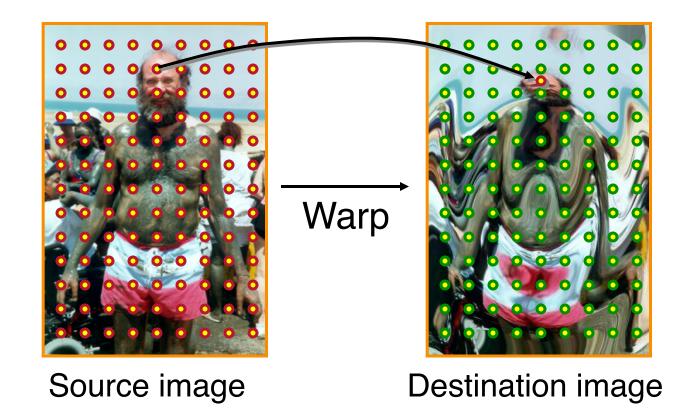
1) Specifying where every pixel goes (mapping)



Source image

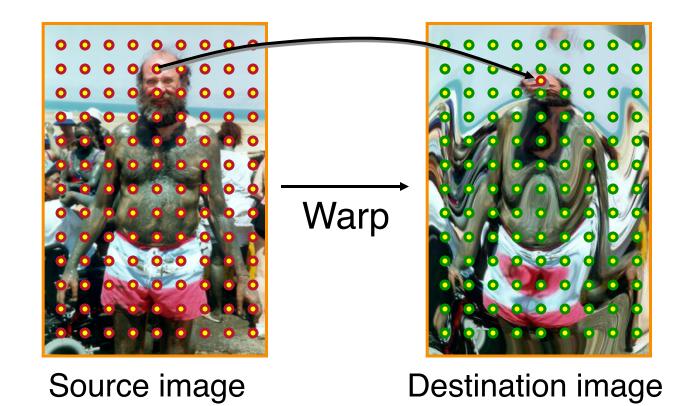
Destination image

- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)



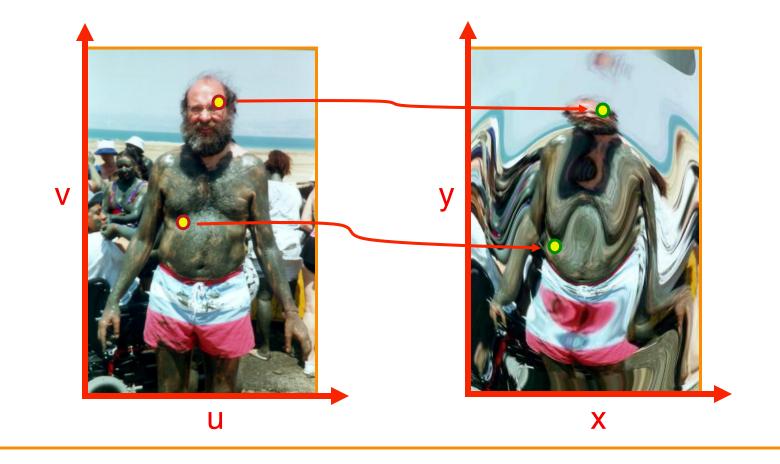
Issues:

Specifying where every pixel goes (mapping)
 Computing colors at destination pixels (resampling)



Mapping

- Define transformation
 - $\circ~$ Describe the destination (x,y) for every source (u,v)

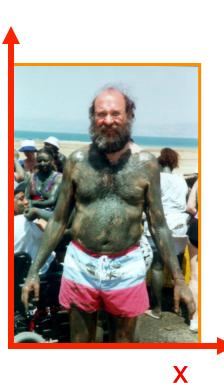


Parametric Mappings

- Scale by *factor*:
 - x = factor * u
 - y = factor * v

V

V

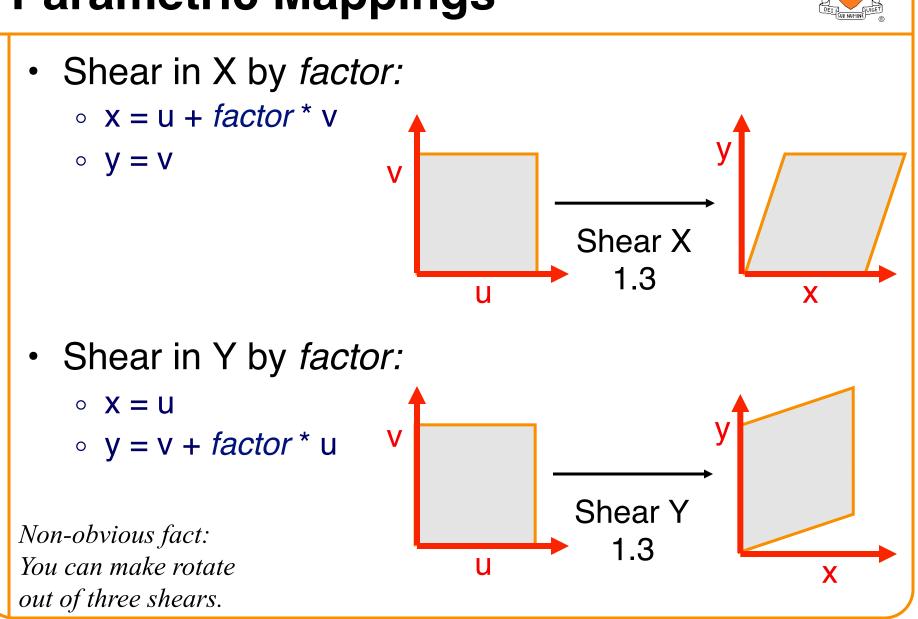


Parametric Mappings

Rotate by Θ degrees:
x = ucosΘ - vsinΘ
y = usinΘ + vcosΘ

Rotate

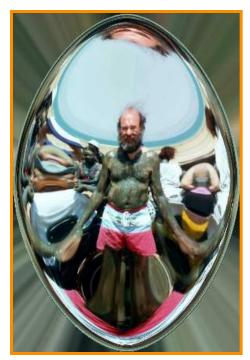
30°



Parametric Mappings

Other Parametric Mappings

- Any function of u and v:
 - $x = f_x(u,v)$ • $y = f_v(u,v)$



Fish-eye

"Swirl"

"Rain"

COS426 Examples

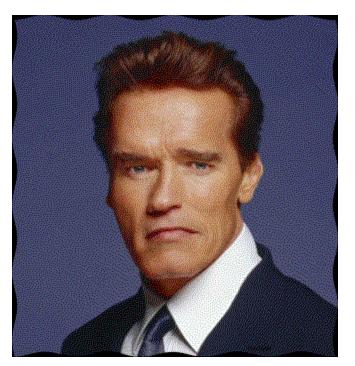
Aditya Bhaskara

Wei Xiang

More COS426 Examples

Sid Kapur

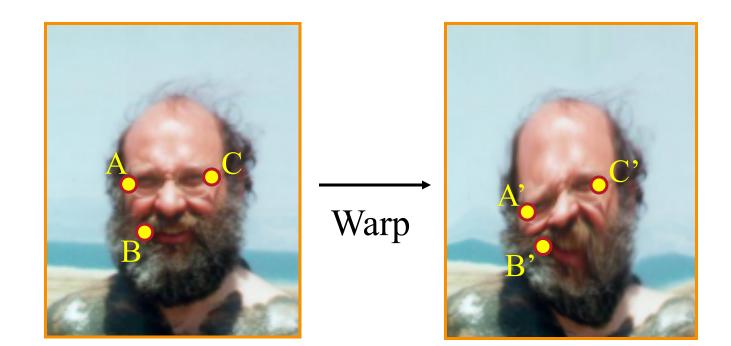
Michael Oranato



Eirik Bakke

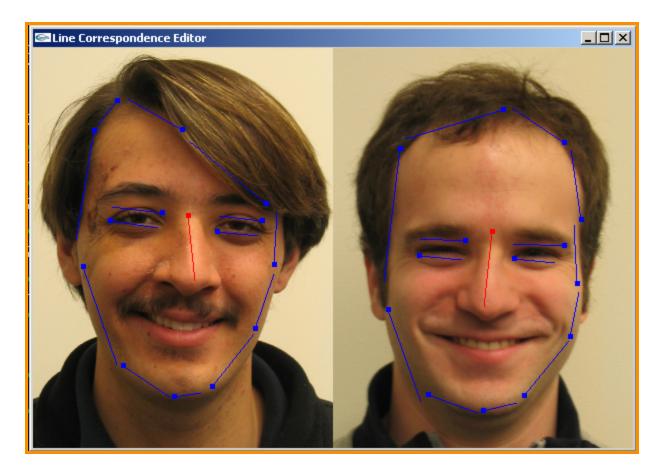
Point Correspondence Mappings

- Mappings implied by correspondences:
 - A ↔ A'
 B ↔ B'
 - ∘ C ↔ C'



Line Correspondence Mappings

• Beier & Neeley use pairs of lines to specify warps

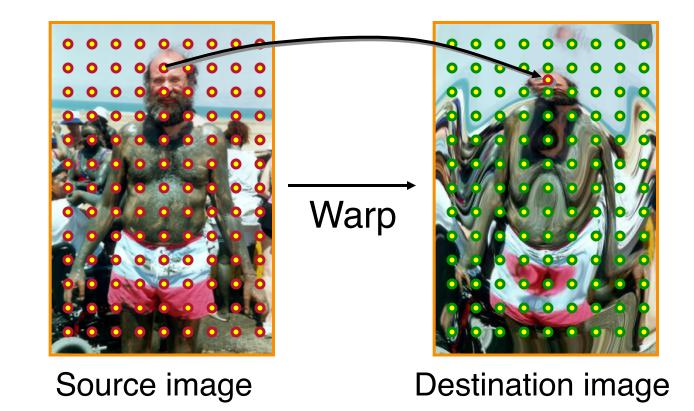


Discussed in next lecture....

Issues:

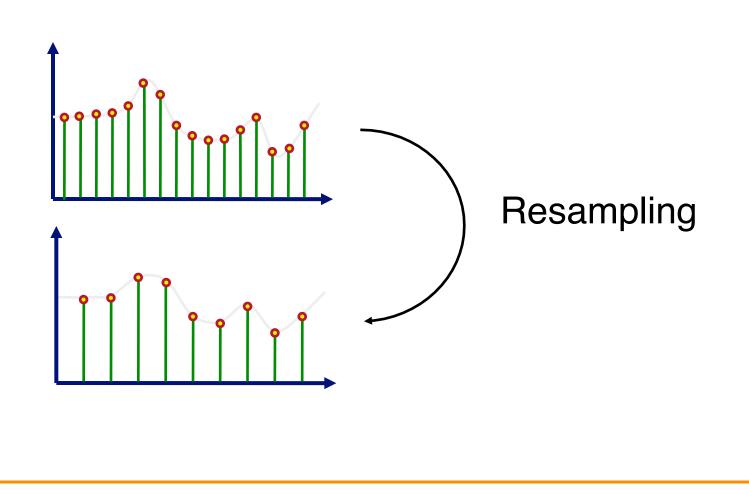
1) Specifying where every pixel goes (mapping)

2) Computing colors at destination pixels (resampling)



Resampling

Simple example: scaling resolution = resampling



Resampling

Example: scaling resolution = resampling

Scaled

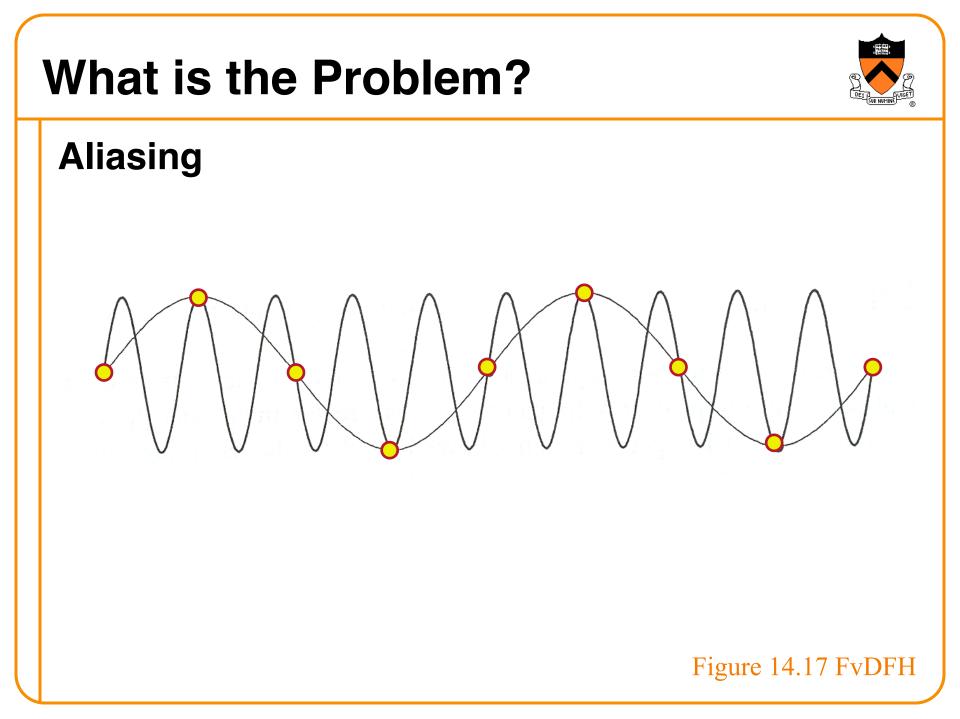
Original

Resampling

Naïve resampling can cause visual artifa

Original

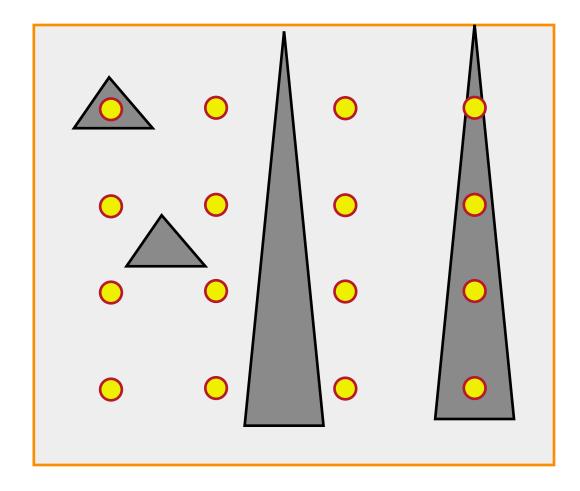
Scaled



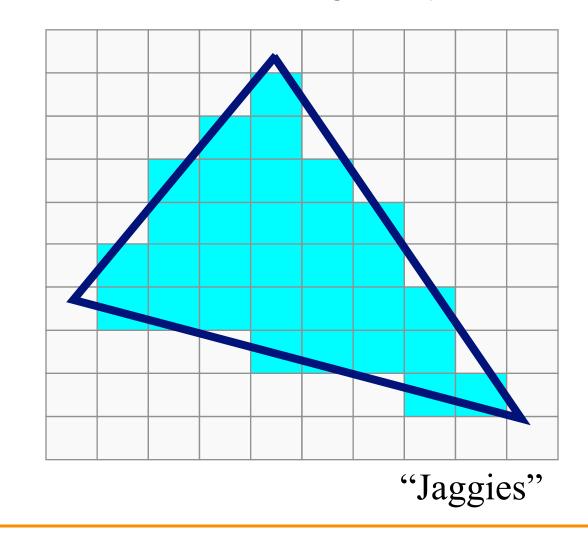
Aliasing

Artifacts due to under-sampling

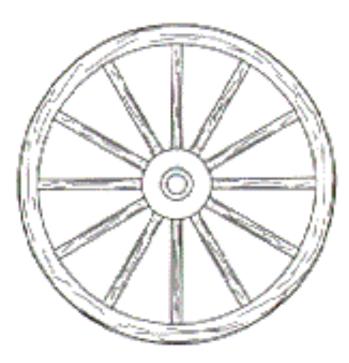
Spatial Aliasing



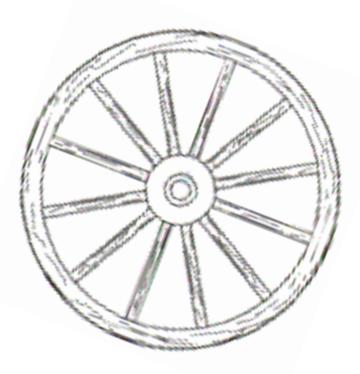
Spatial Aliasing



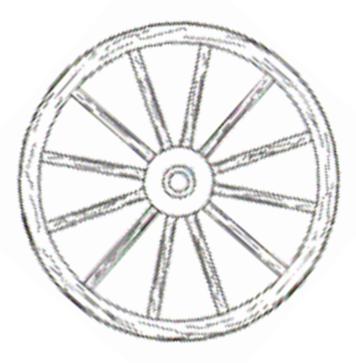
- Strobing
- Flickering



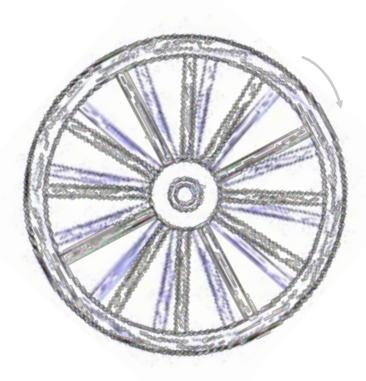
- Strobing
- Flickering



- Strobing
- Flickering

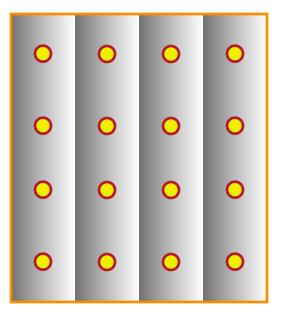


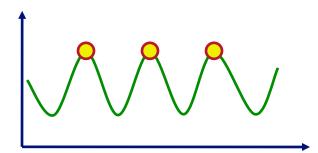
- Strobing
- Flickering



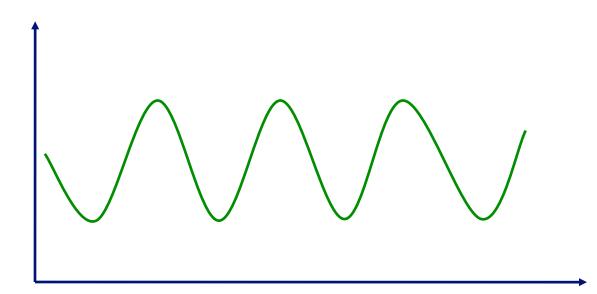
Aliasing

When we under-sample an image, we can create visual artifacts where high frequencies masquerade as low ones

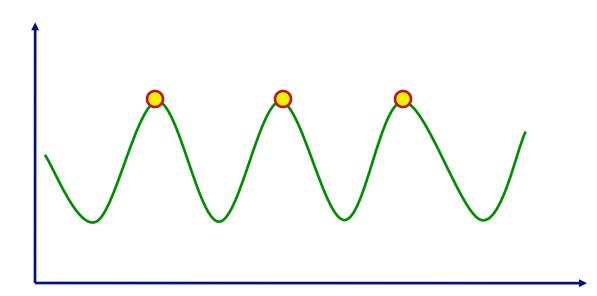




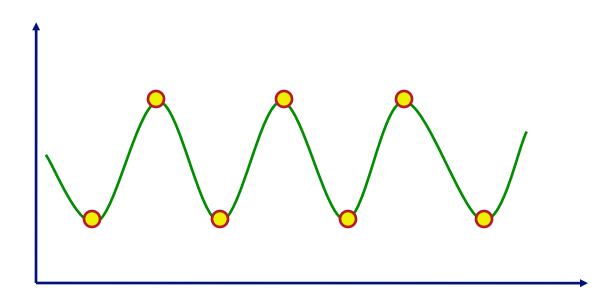
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



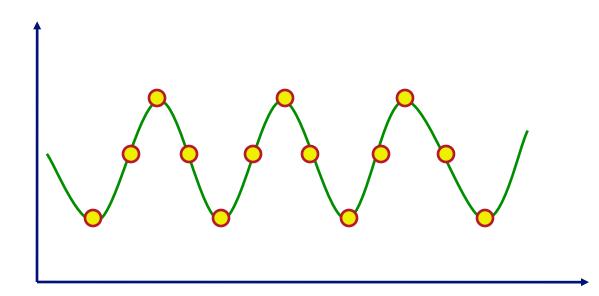
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



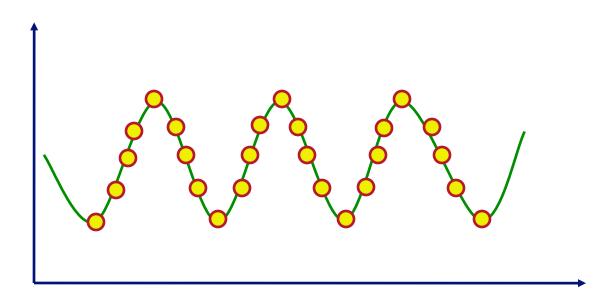
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



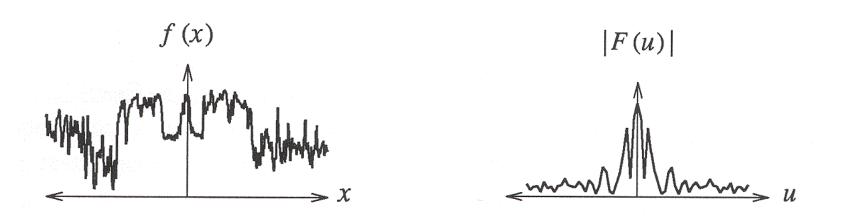
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



Spectral Analysis

- Spatial domain:
 - Function: f(x)
 - Filtering: convolution

- Frequency domain:
- o Function: F(u)
- o Filtering: multiplication



Any signal can be written as a sum of periodic functions.

Fourier Transform

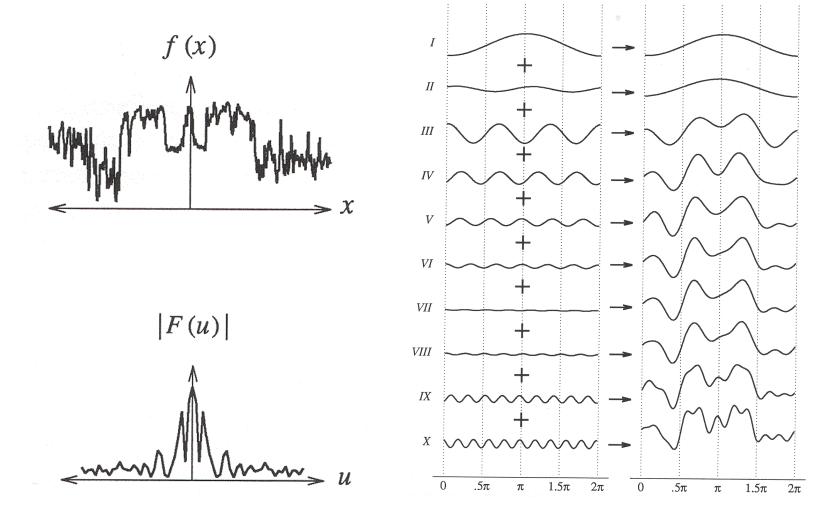


Figure 2.6 Wolberg

Fourier Transform

• Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi x u} dx$$

• Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{+i2\pi u x} du$$

Sampling Theorem

- A signal can be reconstructed from its samples, iff the original signal has no content >= 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called the "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

Sampling Theorem

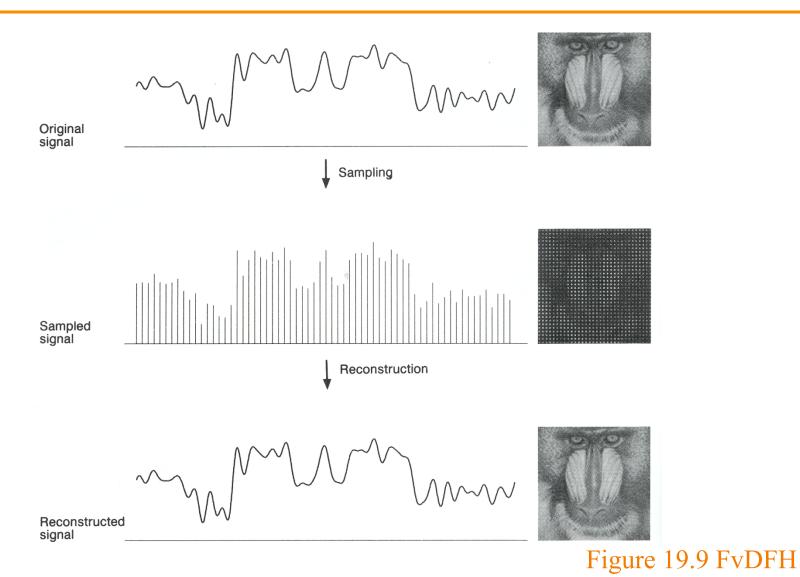
 A signal can be reconstructed from its samples, iff the original signal has no content >= 1/2 the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled

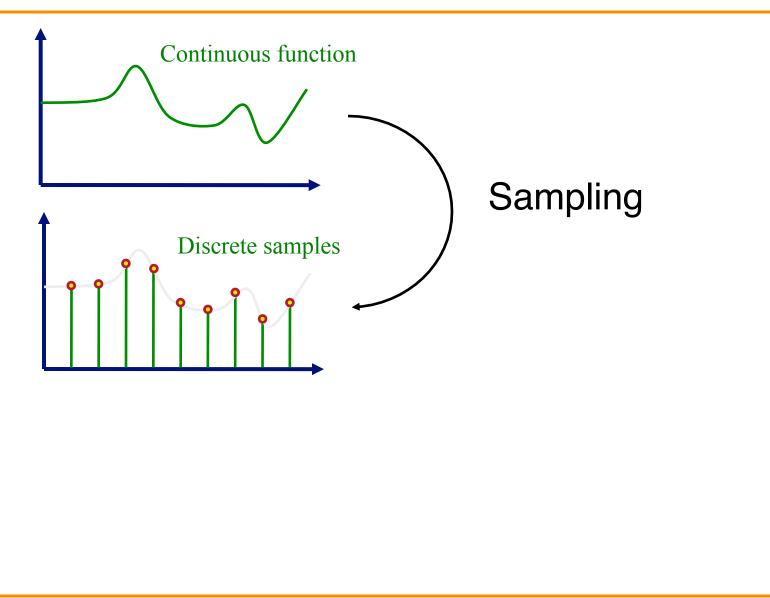
Under-sampling

Figure 14.17 FvDFH

Sampling and Reconstruction



Sampling and Reconstruction



Sampling and Reconstruction

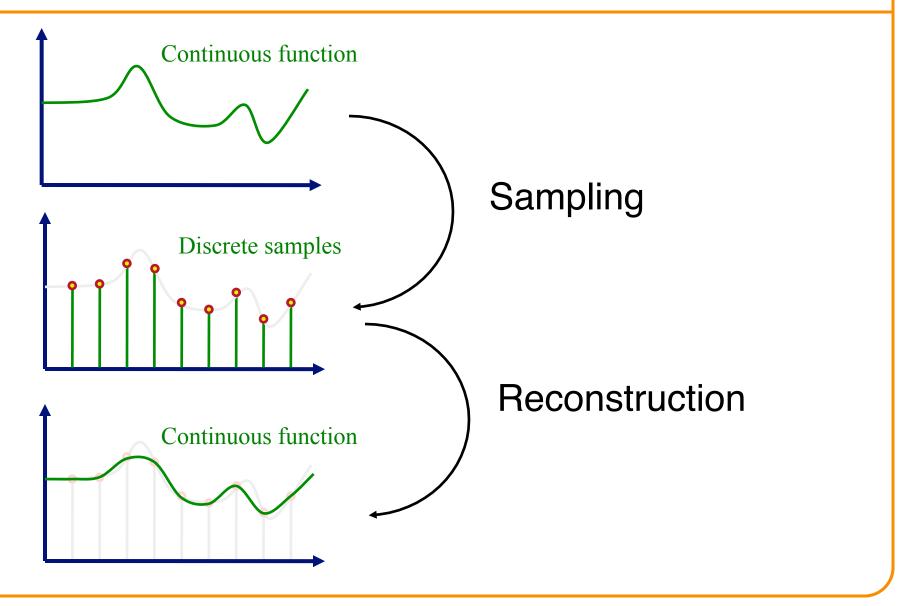


Image Processing

OK ... but how does that affect image processing?

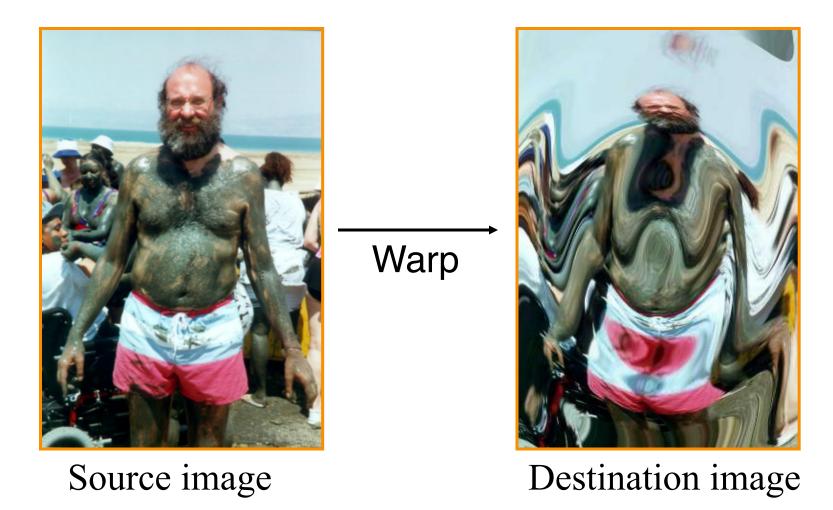
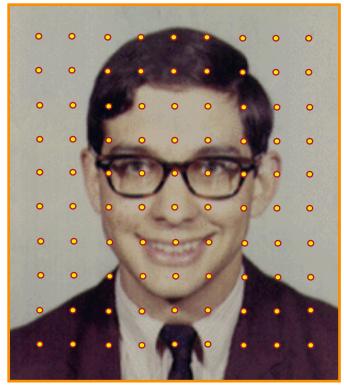


Image Processing

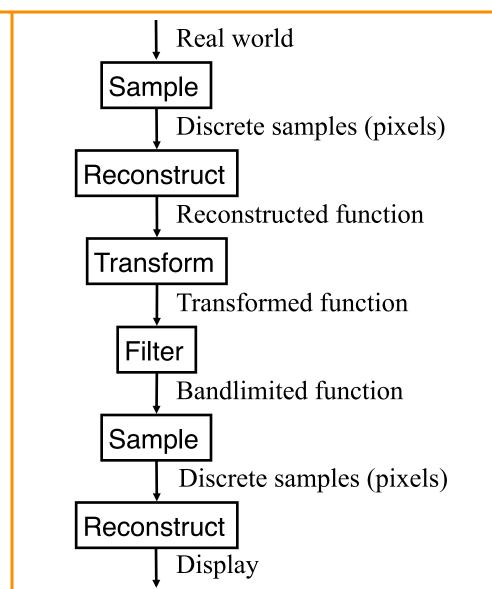
Image processing often requires resampling Must band-limit before resampling to avoid aliasing

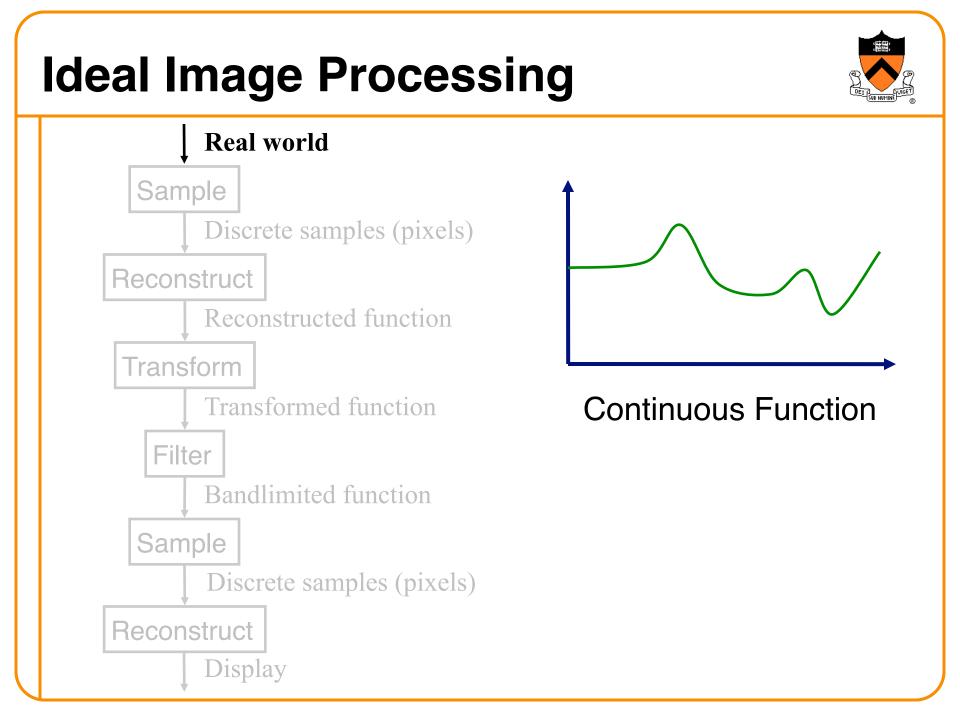
Original image

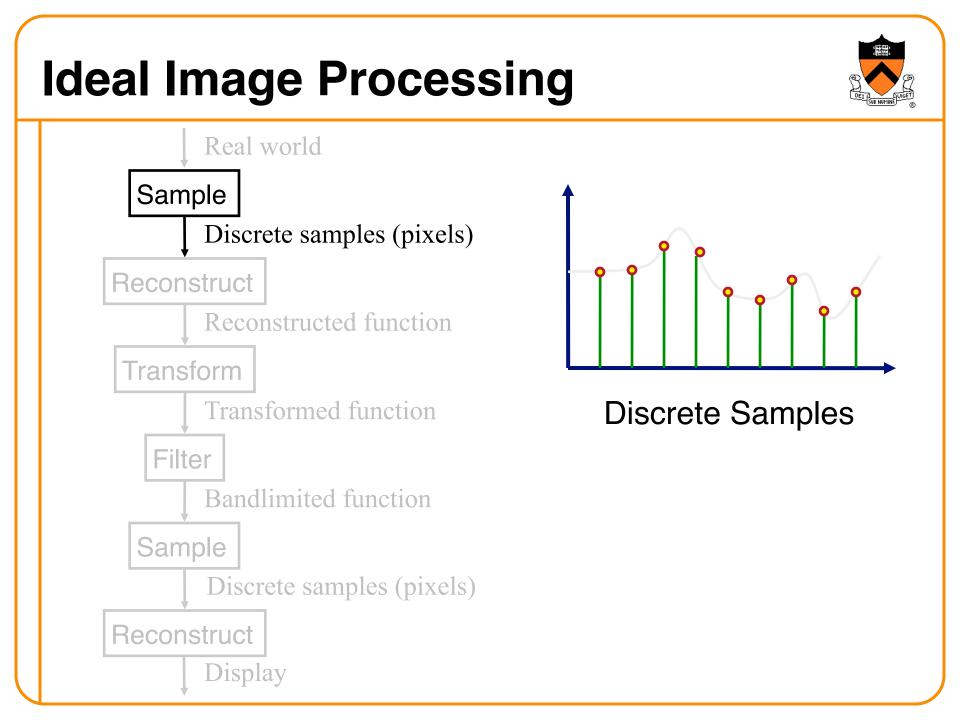


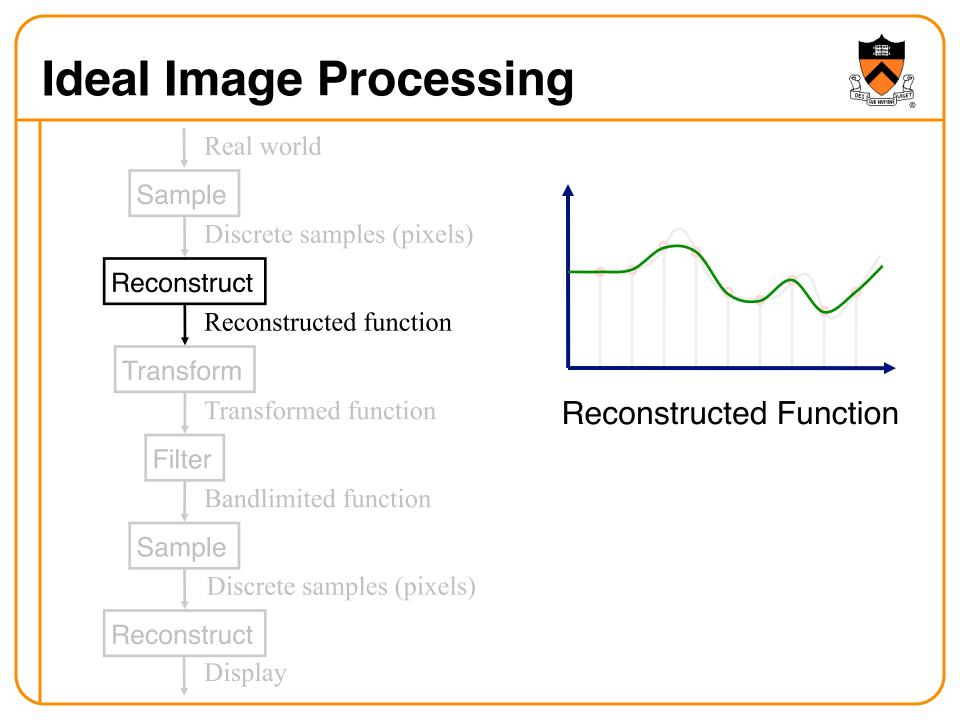
1/4 resolution

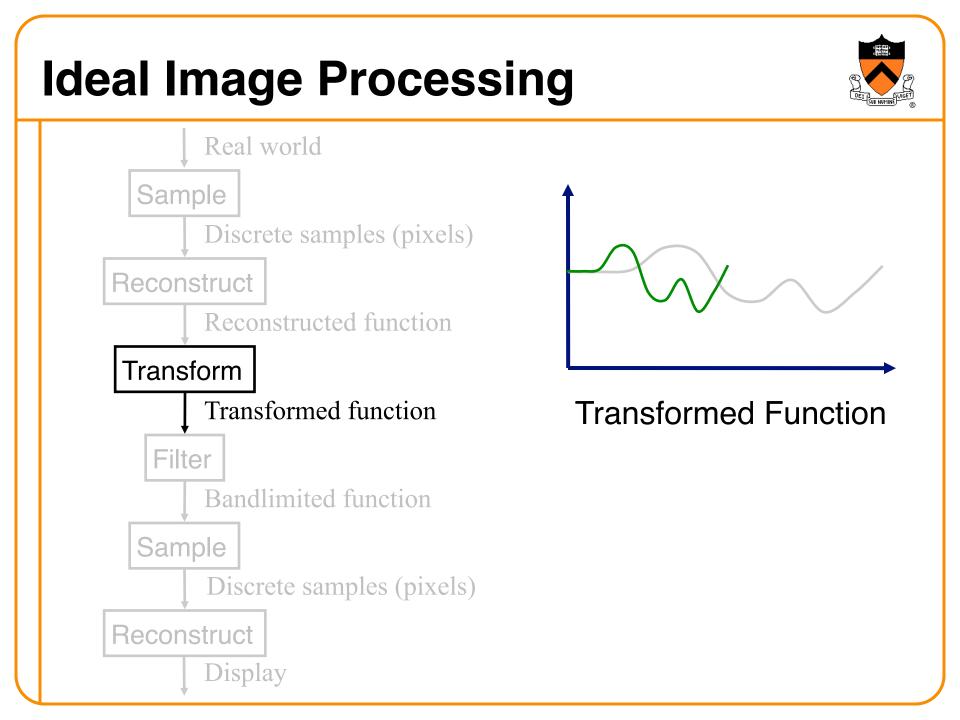
Ideal Image Processing

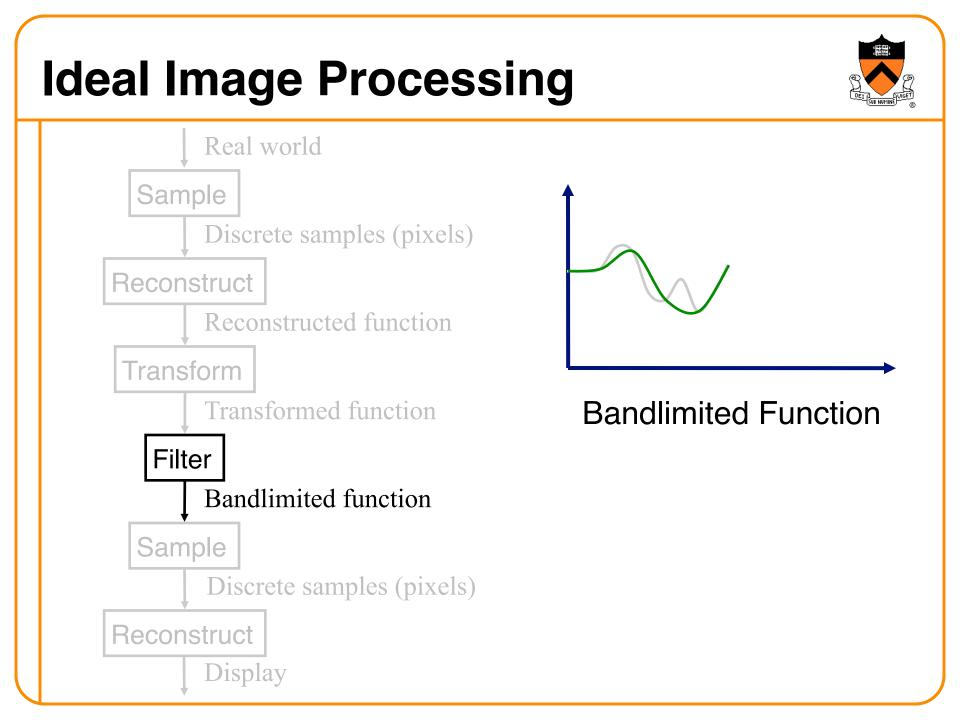


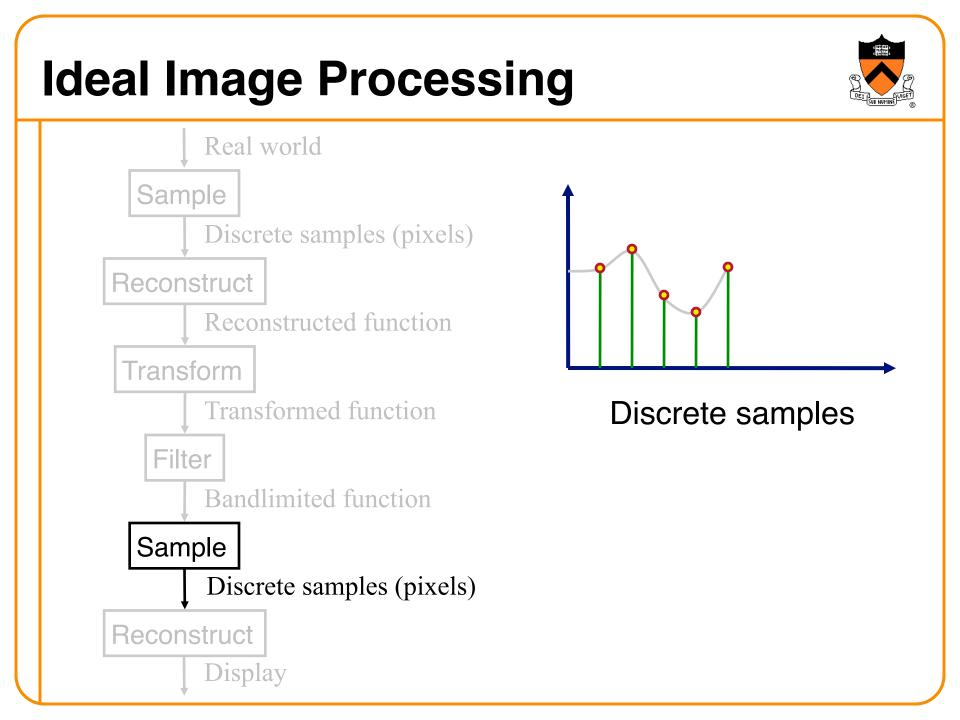


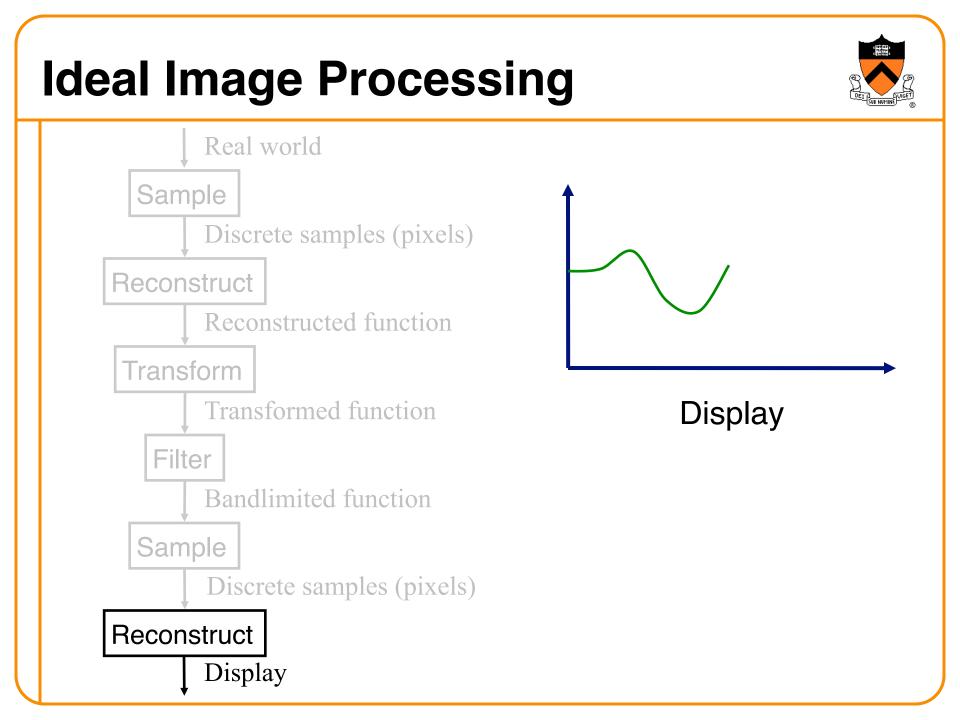






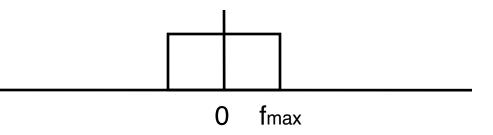




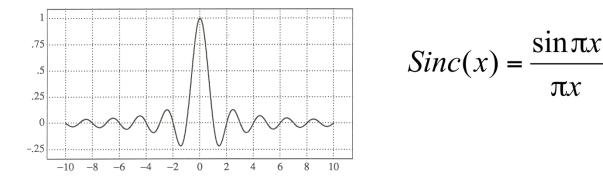


Ideal Bandlimiting Filter

Frequency domain



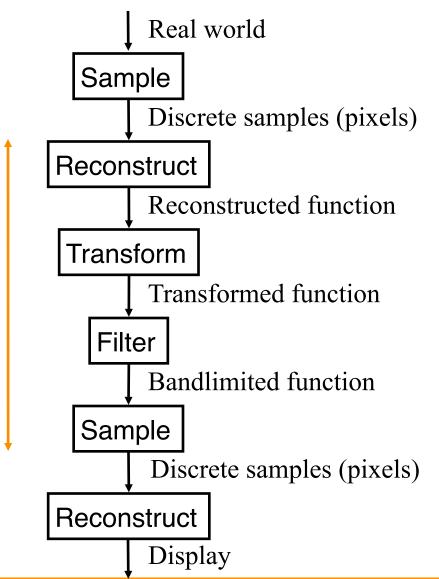
Spatial domain



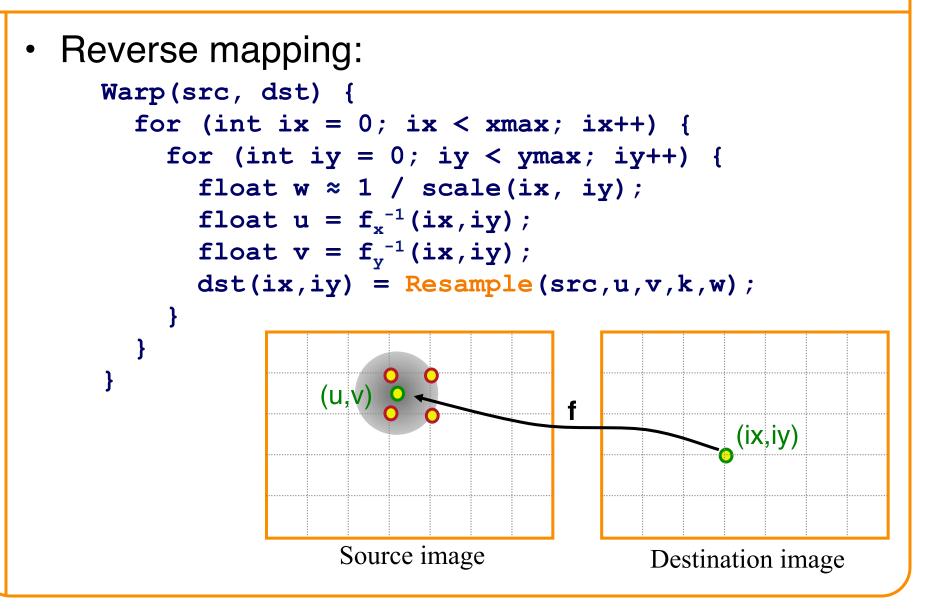
 πx

Practical Image Processing

Finite low-pass filters • Point sampling (bad) **Box filter** 0 Triangle filter 0 Filter Gaussian filter 0 -ow-Pass

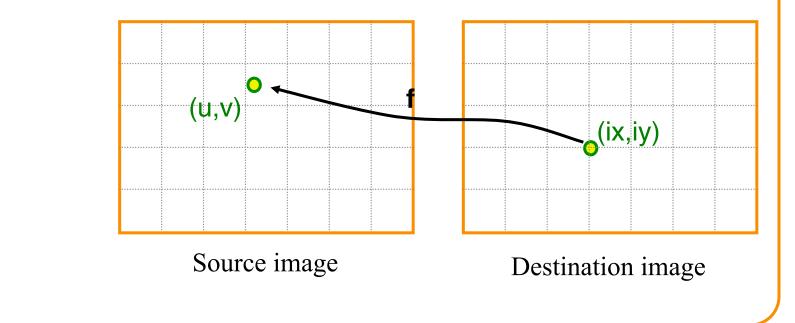


Practical Image Processing



Resampling

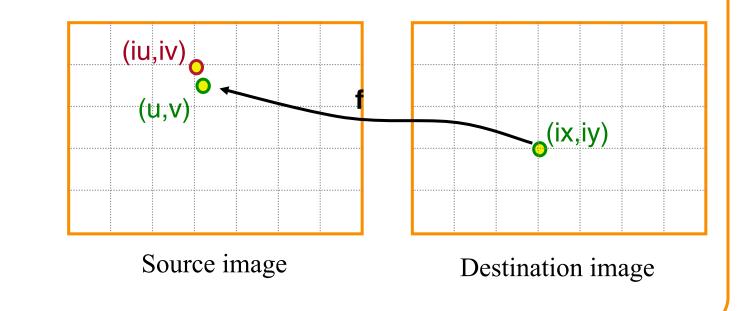
 Compute value of 2D function at arbitrary location from given set of samples

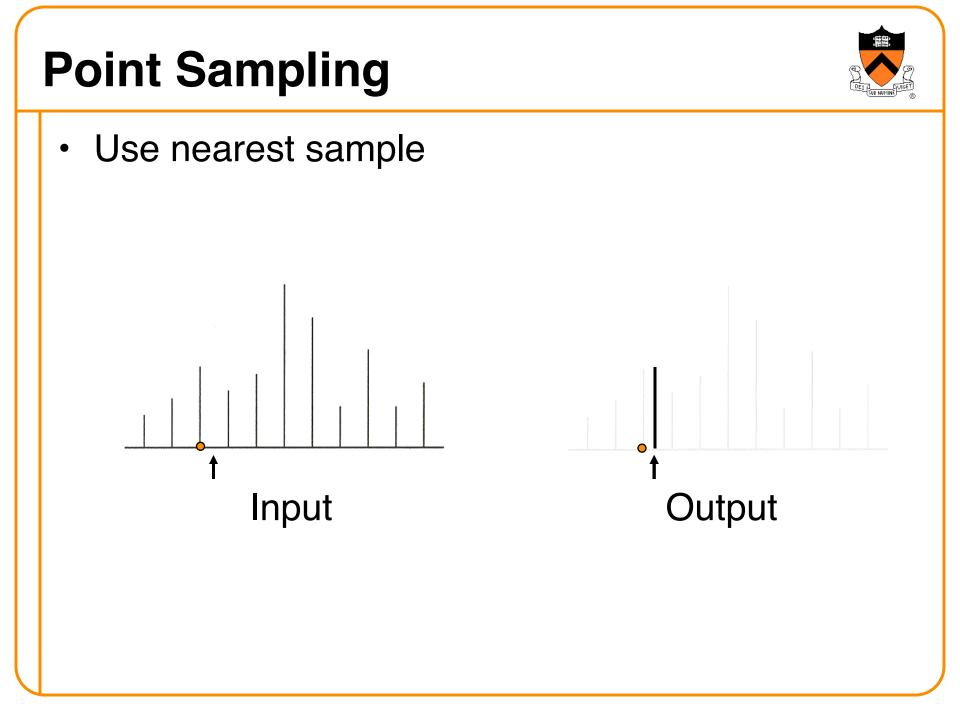


Point Sampling

• Possible (poor) resampling implementation:

```
float Resample(src, u, v, k, w) {
    int iu = round(u);
    int iv = round(v);
    return src(iu,iv);
}
```





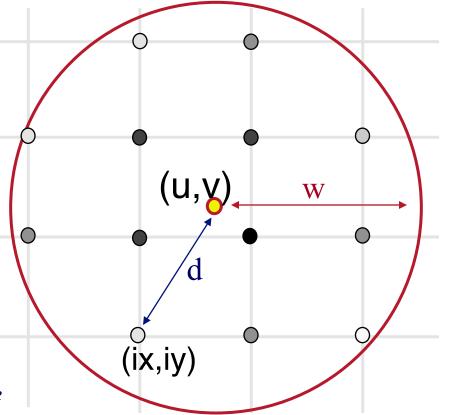
Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited

Resampling with Low-Pass Filter

 Output is weighted average of input samples, where weights are normalized values of filter (k)



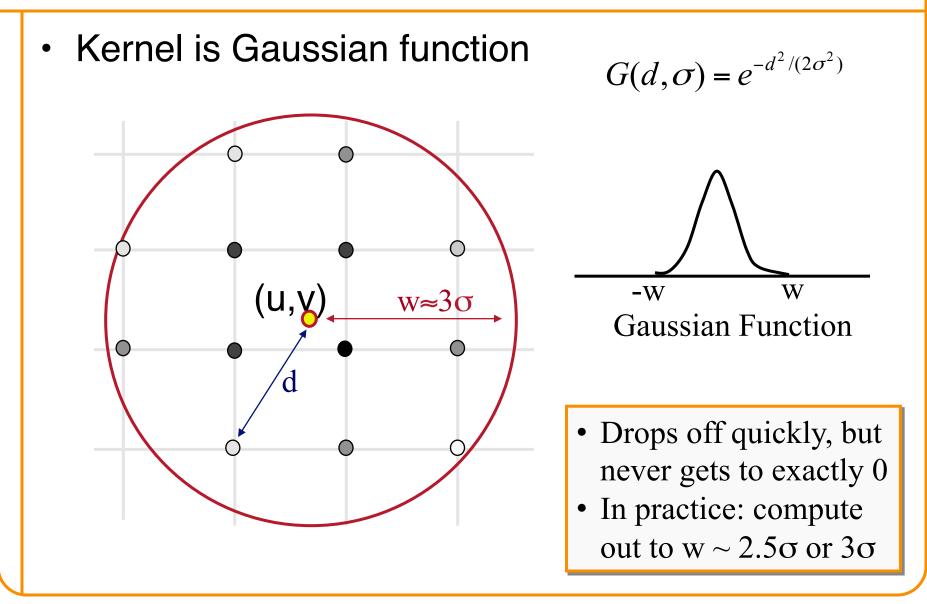
k(*ix*,*iy*) *represented by gray value*

Resampling with Low-Pass Filter

• Possible implementation:

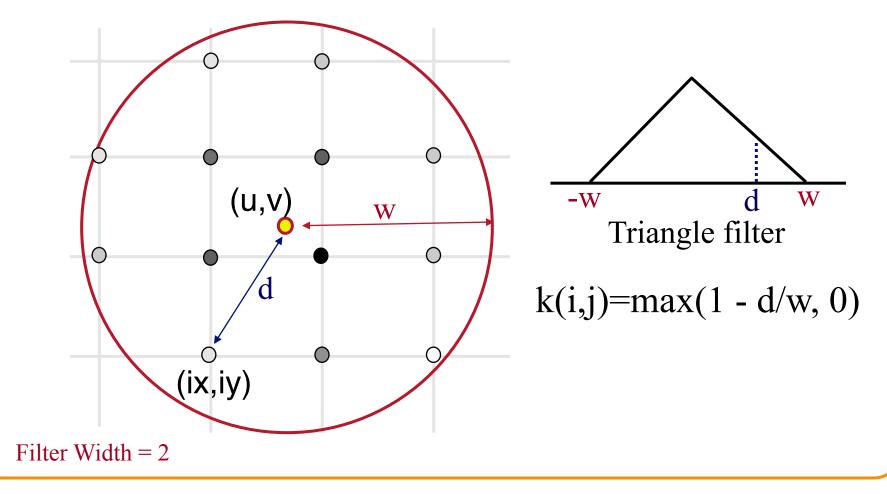
```
float Resample(src, u, v, k, w)
  float dst = 0;
  float ksum = 0;
  int ulo = u - w; etc.
  for (int iu = ulo; iu < uhi; iu++) {
    for (int iv = vlo; iv < vhi; iv++) {
      dst += k(u,v,iu,iv,w) * src(u,v)
      ksum += k(u, v, iu, iv, w);
                            (u,v)
  return dst / ksum;
                                               (ix,iy)
                           Source image
                                         Destination image
```

Resampling with Gaussian Filter



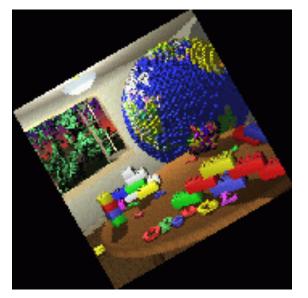
Resampling with Triangle Filter

 For isotropic Triangle filter, k(ix,iy) is function of d and w



Sampling Method Comparison

- Trade-offs
 - Aliasing versus blurring
 - Computation speed



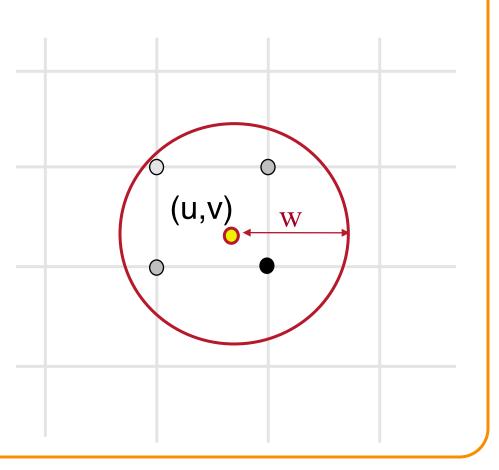
Point

Triangle

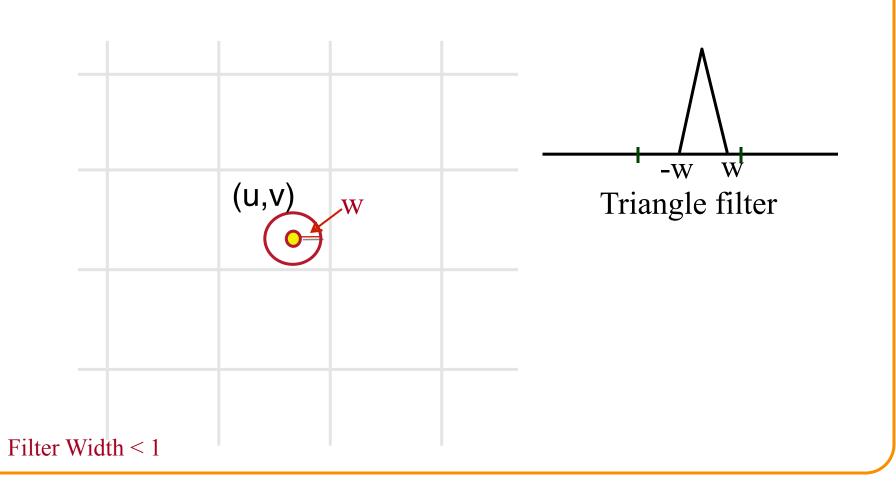
Gaussian

• Filter width chosen based on scale factor of map

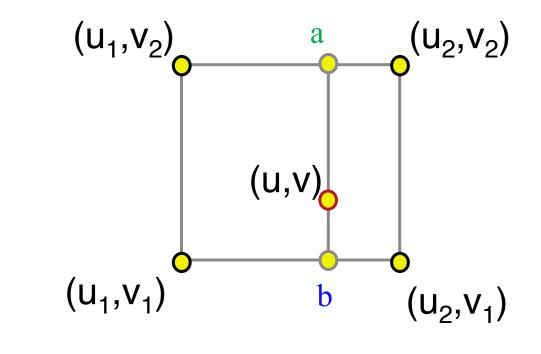
Filter must be wide enough to avoid aliasing



• What if width (w) is smaller than sample spacing?

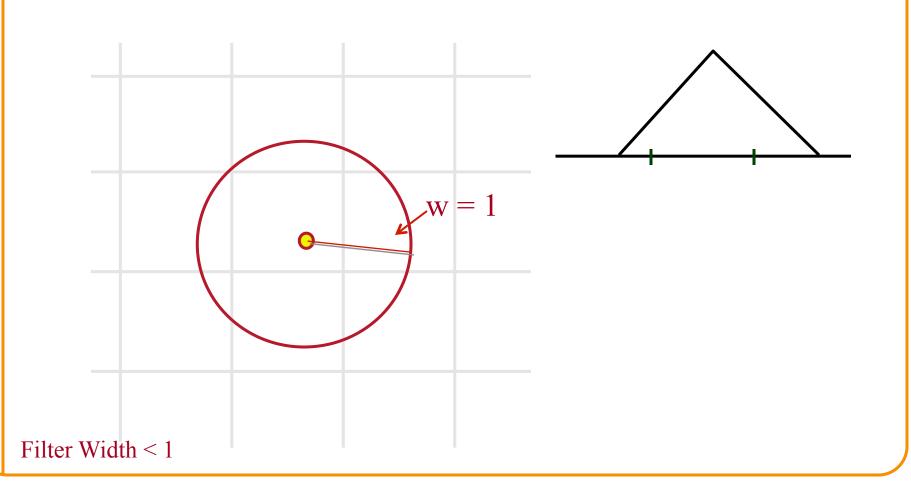


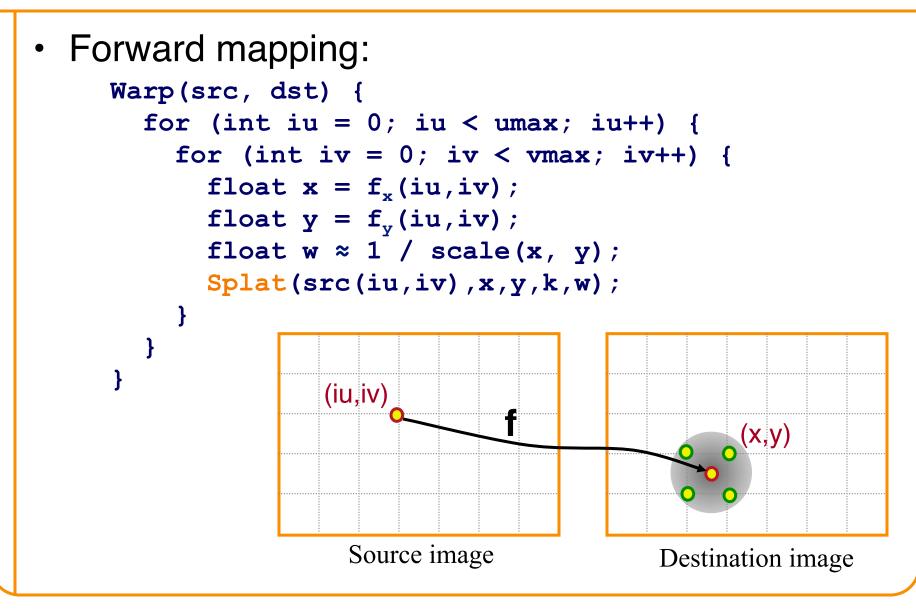
- Alternative 1: Bilinear interpolation of closest pixels
 - a = linear interpolation of src(u_1, v_2) and src(u_2, v_2)
 - **b** = linear interpolation of $src(u_1, v_1)$ and $src(u_2, v_1)$
 - dst(x,y) = linear interpolation of "a" and "b"

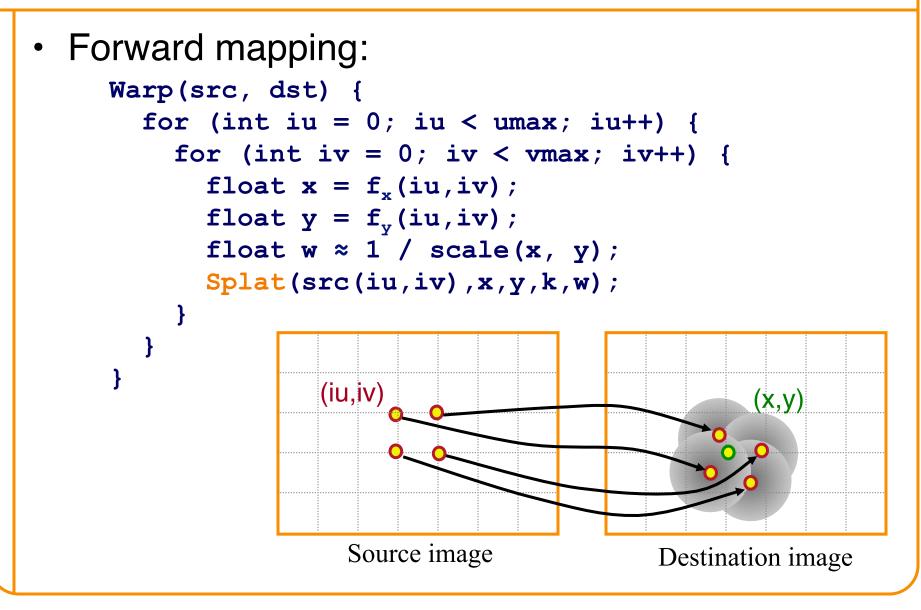


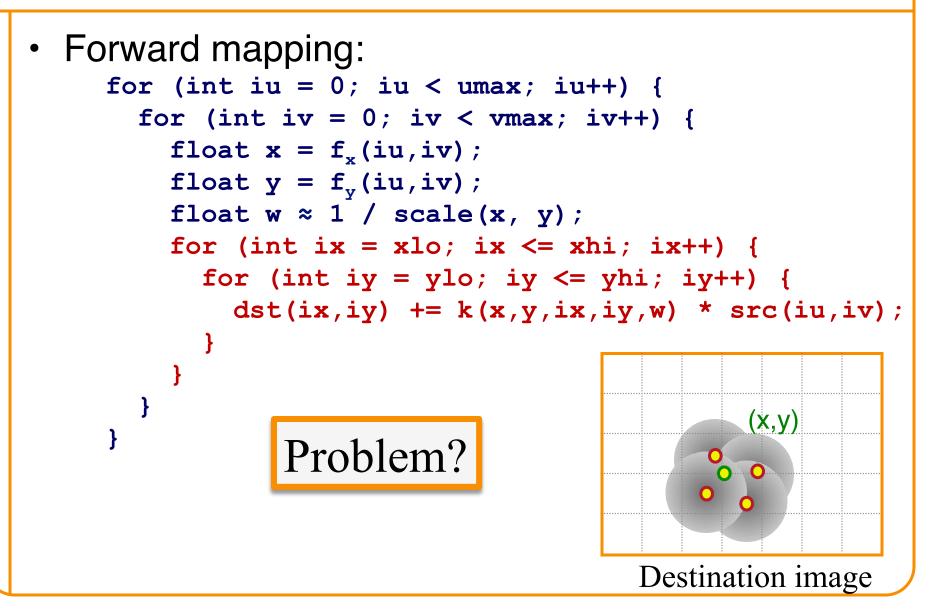
Filter Width < 1

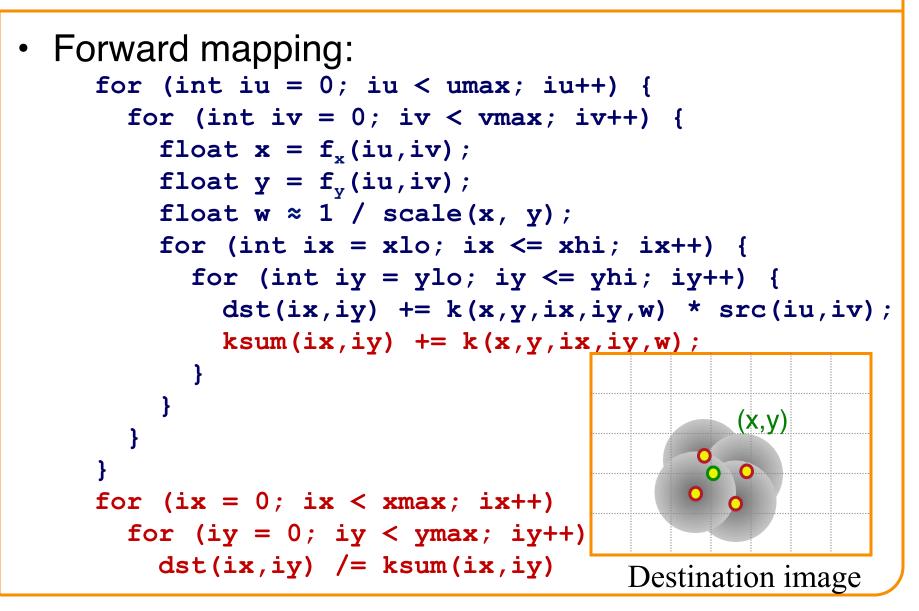
• Alternative 2: force width to be at least 1





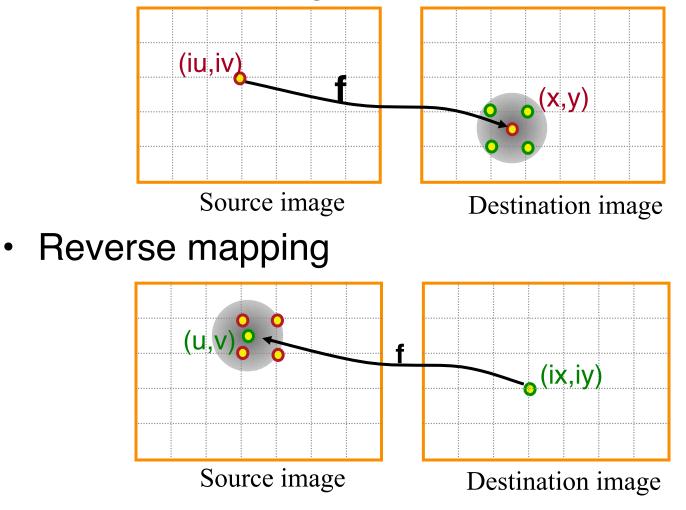






Forward vs. Reverse Mapping?

• Forward mapping



Forward vs. Reverse Mapping

- Tradeoffs:
 - Forward mapping:
 - Requires separate buffer to store weights
 - Reverse mapping:
 - Requires inverse of mapping function, random access to original image

Reverse mapping is usually preferable

Putting it All Together

Possible implementation of image blur:

```
Blur(src, dst, sigma) {
    w ≈ 3*sigma;
    for (int ix = 0; ix < xmax; ix++) {
        for (int iy = 0; iy < ymax; iy++) {
            float u = ix;
            float v = iy;
            dst(ix,iy) = Resample(src,u,v,k,w);
        }
    }
}</pre>
```


Increasing sigma

Putting it All Together

• Possible implementation of image scale:

```
Scale(src, dst, sx, sy) {
  w \approx \max(1/sx, 1/sy);
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
      float u = ix / sx;
      float v = iy / sy;
      dst(ix,iy) = Resample(src,u,v,k,w);
                            (U,V)
                                               (ix,iy)
```

Source image

Destination image

Putting it All Together

• Possible implementation of image rotation:

```
Rotate(src, dst, \Theta) {
  w ≈
  for (int ix = 0; ix < xmax; ix++) {
     for (int iy = 0; iy < ymax; iy++) {
       float u = ix \cdot \cos(-\Theta) - iy \cdot \sin(-\Theta);
       float v = ix * sin(-\Theta) + iy * cos(-\Theta);
       dst(ix,iy) = Resample(src,u,v,k,w);
          0
           0
                              Rotate
```

Summary

- Mapping
 - Parametric
 - Correspondences
- Sampling, reconstruction, resampling
 - Frequency analysis of signal content
 - Filter to avoid aliasing
 - Reduce visual artifacts due to aliasing
 » Blurring is better than aliasing
- Image processing
 - Forward vs. reverse mapping

