
Sampling, Resampling, 
and Warping
COS 426, Spring 2015  

Adam Finkelstein



Image Processing Operations I
•  Luminance

§  Brightness
§  Contrast.
§  Gamma
§  Histogram equalization

•  Color
§  Black & white
§  Saturation
§  White balance

•  Linear filtering 
§  Blur & sharpen
§  Edge detect
§  Convolution

•  Non-linear filtering
§  Median
§  Bilateral filter

•  Dithering
§  Quantization
§  Ordered dither
§  Floyd-Steinberg



Image Processing Operations II
•  Transformation

§  Scale
§  Rotate
§  Warp

•  Combining images
§  Composite
§  Morph
§  Comp photo

} Today

} Thursday 
guest: Tom Funkhouser



Image Transformation
•  Move pixels of an image

Source image Destination image 

Warp



Image Transformation
•  Issues:

1) Specifying where every pixel goes (mapping)

Source image Destination image

Warp



Image Transformation
•  Issues:

1) Specifying where every pixel goes (mapping)
2) Computing colors at destination pixels (resampling)

Source image Destination image

Warp



Image Transformation
•  Issues:

1) Specifying where every pixel goes (mapping)
2) Computing colors at destination pixels (resampling)

Source image Destination image

Warp



Mapping
•  Define transformation
!  Describe the destination (x,y) for every source (u,v)

v

u

y

x



Parametric Mappings
•  Scale by factor:
!  x = factor * u
!  y = factor * v

Scale
0.8

y

x

v

u



Parametric Mappings
•  Rotate by Θ degrees:
!  x = ucosΘ - vsinΘ 
!  y = usinΘ + vcosΘ 

Rotate
30o

v

u

y

x



Parametric Mappings
•  Shear in X by factor:
!  x = u + factor * v
!  y = v

•  Shear in Y by factor:
!  x = u
!  y = v + factor * u

Shear X
1.3

Shear Y
1.3

v

u

v

u

y

x

y

x

Non-obvious fact: 
You can make rotate 
out of three shears. 



Other Parametric Mappings
•  Any function of u and v:
!  x = fx(u,v)
!  y = fy(u,v)

Fish-eye 

“Swirl” 

“Rain” 



COS426 Examples

Wei Xiang Aditya Bhaskara  



More COS426 Examples

Michael Oranato 

Sid Kapur 

Eirik Bakke 



Point Correspondence Mappings
•  Mappings implied by correspondences:
!  A ↔ A’
!  B ↔ B’
!  C ↔ C’

A 
A’ 

B B’ 

C’ C 

Warp 



Line Correspondence Mappings
•  Beier & Neeley use pairs of lines to specify warps

Discussed in next lecture…. 



Image Transformation
•  Issues:

1) Specifying where every pixel goes (mapping)
2) Computing colors at destination pixels (resampling)

Source image Destination image

Warp



Resampling

Resampling

Simple example: scaling resolution = resampling



Resampling
Example: scaling resolution = resampling

Original 

Scaled 



Original 

Scaled 

Resampling
•  Naïve resampling can cause visual artifacts



What is the Problem?
Aliasing

Figure 14.17 FvDFH 



Aliasing
Artifacts due to under-sampling

Figure 14.17 FvDFH 



Spatial Aliasing
Artifacts due to under-sampling in x,y



Spatial Aliasing
Artifacts due to under-sampling in x,y

“Jaggies” 



Temporal Aliasing
Artifacts due to under-sampling in time
!  Strobing
!  Flickering



Temporal Aliasing
Artifacts due to under-sampling in time
!  Strobing
!  Flickering



Temporal Aliasing
Artifacts due to under-sampling in time
!  Strobing
!  Flickering



Temporal Aliasing
Artifacts due to under-sampling in time
!  Strobing
!  Flickering



Aliasing
When we under-sample an image,  
we can create visual artifacts where  
high frequencies masquerade as low ones



Sampling Theory
How many samples are enough to avoid aliasing?
!  How many samples are required to represent 

a given signal without loss of information?
!  What signals can be reconstructed without loss 

for a given sampling rate?



Sampling Theory
How many samples are enough to avoid aliasing?
!  How many samples are required to represent 

a given signal without loss of information?
!  What signals can be reconstructed without loss 

for a given sampling rate?



Sampling Theory
How many samples are enough to avoid aliasing?
!  How many samples are required to represent 

a given signal without loss of information?
!  What signals can be reconstructed without loss 

for a given sampling rate?



Sampling Theory
How many samples are enough to avoid aliasing?
!  How many samples are required to represent 

a given signal without loss of information?
!  What signals can be reconstructed without loss 

for a given sampling rate?



Sampling Theory
How many samples are enough to avoid aliasing?
!  How many samples are required to represent 

a given signal without loss of information?
!  What signals can be reconstructed without loss 

for a given sampling rate?



Spectral Analysis
•  Spatial domain:
!  Function: f(x)
!  Filtering: convolution

•  Frequency domain:
o  Function: F(u)
o  Filtering: multiplication

Any signal can be written as a 
sum of periodic functions.



Fourier Transform

Figure 2.6 Wolberg 



Fourier Transform
•  Fourier transform:

•  Inverse Fourier transform:



Sampling Theorem

•  A signal can be reconstructed from its samples,  
iff the original signal has no content >= 
1/2 the sampling frequency - Shannon

•  The minimum sampling rate for bandlimited 
function is called the “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.

The frequency is called the bandwidth.



Sampling Theorem
•  A signal can be reconstructed from its samples,  

iff the original signal has no content >= 
1/2 the sampling frequency - Shannon

Figure 14.17 FvDFH Under-sampling

Aliasing will occur if the signal is under-sampled



Sampling and Reconstruction

Figure 19.9 FvDFH 



Sampling and Reconstruction

Sampling

Continuous function 

Discrete samples 



Sampling and Reconstruction

Sampling

Reconstruction

Continuous function 

Discrete samples 

Continuous function 



Image Processing
OK … but how does that affect image processing?

Source image Destination image 

Warp



Image Processing
Image processing often requires resampling

Ø Must band-limit before resampling to avoid aliasing

Original image 1/4  resolution 



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Continuous Function



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Discrete Samples



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Reconstructed Function



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Transformed Function



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Bandlimited Function



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Discrete samples



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Display



Ideal Bandlimiting Filter
•  Frequency domain

•  Spatial domain

Figure 4.5 Wolberg 

0    fmax



Practical Image Processing
•  Finite low-pass filters
!  Point sampling (bad)
!  Box filter
!  Triangle filter
!  Gaussian filter

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 

Sample

Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 

Lo
w

-P
as

s 
Fi

lte
r



Practical Image Processing
•  Reverse mapping:

Warp(src, dst) { 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float w ≈ 1 / scale(ix, iy); 
      float u = fx-1(ix,iy); 
      float v = fy-1(ix,iy); 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 

Source image Destination image 

(u,v)
(ix,iy)

f



Resampling
•  Compute value of 2D function at arbitrary location 

from given set of samples

Source image Destination image 

f(u,v)
(ix,iy)



Point Sampling
•  Possible (poor) resampling implementation:

Source image Destination image 

f(u,v)
(ix,iy)

float Resample(src, u, v, k, w) { 
  int iu = round(u); 
  int iv = round(v); 
  return src(iu,iv); 
} 
 

(iu,iv)



Point Sampling
•  Use nearest sample

Input Output



Point Sampling

Point Sampled: Aliasing! Correctly Bandlimited 



Resampling with Low-Pass Filter
•  Output is weighted average of input samples, 

where weights are normalized values of filter (k)

(u,v)

k(ix,iy) represented by gray value 

w 

(ix,iy)

d 



Resampling with Low-Pass Filter
•  Possible implementation:

float Resample(src, u, v, k, w)  
{ 
  float dst = 0;  
  float ksum = 0; 
  int ulo = u - w; etc. 
  for (int iu = ulo; iu < uhi; iu++) { 
    for (int iv = vlo; iv < vhi; iv++) { 
      dst += k(u,v,iu,iv,w) * src(u,v) 
      ksum += k(u,v,iu,iv,w); 
    } 
  } 
  return dst / ksum; 
} 
 

Source image Destination image 

f(u,v)
(ix,iy)



Resampling with Gaussian Filter
•  Kernel is Gaussian function

(u,v)
Gaussian Function 

w -w 

d 

w≈3σ 

)2/( 22

),( σσ dedG −=

•  Drops off quickly, but 
never gets to exactly 0 
•  In practice: compute 

out to w ~ 2.5σ or 3σ 



Resampling with Triangle Filter
•  For isotropic Triangle filter,  

k(ix,iy) is function of d and w

(u,v)

Filter Width = 2 

Triangle filter 

d 

w w -w d 

k(i,j)=max(1 - d/w, 0) 

(ix,iy)



Sampling Method Comparison

Point Triangle Gaussian

•  Trade-offs
!  Aliasing versus blurring
!  Computation speed



Resampling Details
•  Filter width chosen based  

on scale factor of map

Filter must be 
wide enough 

to avoid aliasing  

w (u,v)



Resampling Details
•  What if width (w) is smaller than sample spacing?

Filter Width < 1 

Triangle filter 
w -w 

w (u,v)



Resampling Details
•  Alternative 1: Bilinear interpolation of closest pixels
!  a = linear interpolation of src(u1,v2) and src(u2,v2) 
!  b = linear interpolation of src(u1,v1) and src(u2,v1)
!  dst(x,y) = linear interpolation of “a” and “b”

(u1,v1)

(u2,v2)

(u2,v1)

(u1,v2)

(u,v)

a 

b 
Filter Width < 1 



Resampling Details
•  Alternative 2: force width to be at least 1

Filter Width < 1 

w = 1 



Alternative Algorithm
•  Forward mapping:

Warp(src, dst) { 
  for (int iu = 0; iu < umax; iu++) { 
    for (int iv = 0; iv < vmax; iv++) { 
      float x = fx(iu,iv); 
      float y = fy(iu,iv); 
      float w ≈ 1 / scale(x, y); 
      Splat(src(iu,iv),x,y,k,w);   
    } 
  } 
} 
 f

(iu,iv)
(x,y)

Source image Destination image 



Alternative Algorithm
•  Forward mapping:

Warp(src, dst) { 
  for (int iu = 0; iu < umax; iu++) { 
    for (int iv = 0; iv < vmax; iv++) { 
      float x = fx(iu,iv); 
      float y = fy(iu,iv); 
      float w ≈ 1 / scale(x, y); 
      Splat(src(iu,iv),x,y,k,w); 
    } 
  } 
} 
 

(iu,iv) (x,y)

Source image Destination image 



Alternative Algorithm
•  Forward mapping:

Destination image 

(x,y)

for (int iu = 0; iu < umax; iu++) { 
  for (int iv = 0; iv < vmax; iv++) { 
    float x = fx(iu,iv); 
    float y = fy(iu,iv); 
    float w ≈ 1 / scale(x, y); 
    for (int ix = xlo; ix <= xhi; ix++) { 
      for (int iy = ylo; iy <= yhi; iy++) { 
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv); 
      } 
    } 
  } 
} 
 Problem? 



Alternative Algorithm
•  Forward mapping:

for (int iu = 0; iu < umax; iu++) { 
  for (int iv = 0; iv < vmax; iv++) { 
    float x = fx(iu,iv); 
    float y = fy(iu,iv); 
    float w ≈ 1 / scale(x, y);  
    for (int ix = xlo; ix <= xhi; ix++) { 
      for (int iy = ylo; iy <= yhi; iy++) { 
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv); 
        ksum(ix,iy) += k(x,y,ix,iy,w); 
      } 
    } 
  } 
} 
for (ix = 0; ix < xmax; ix++) 
  for (iy = 0; iy < ymax; iy++) 
    dst(ix,iy) /= ksum(ix,iy) 
 

Destination image 

(x,y)



Forward vs. Reverse Mapping?
•  Forward mapping

•  Reverse mapping

Source image Destination image 

(u,v)
(ix,iy)

f

f
(iu,iv)

(x,y)

Source image Destination image 



Forward vs. Reverse Mapping
•  Tradeoffs:
!  Forward mapping:

-  Requires separate buffer to store weights 

!  Reverse mapping:
-  Requires inverse of mapping function, 

random access to original image

Reverse mapping is usually preferable 



Putting it All Together
•  Possible implementation of image blur:

Increasing sigma 

Blur(src, dst, sigma) { 
  w ≈ 3*sigma; 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float u = ix; 
      float v = iy; 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 



Putting it All Together
•  Possible implementation of image scale:

Scale(src, dst, sx, sy) { 
  w ≈ max(1/sx,1/sy); 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float u = ix / sx; 
      float v = iy / sy; 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 

Source image Destination image 

(u,v) f (ix,iy)



Putting it All Together
•  Possible implementation of image rotation:

Rotate(src, dst, Θ) { 
  w ≈ 1 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float u = ix*cos(-Θ) – iy*sin(-Θ); 
      float v = ix*sin(-Θ) + iy*cos(-Θ); 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 

Rotate
Θ

v

u

y

x



Summary
•  Mapping
!  Parametric
!  Correspondences 

•  Sampling, reconstruction, resampling
!  Frequency analysis of signal content
!  Filter to avoid aliasing
!  Reduce visual artifacts due to aliasing

» Blurring is better than aliasing

•  Image processing
!  Forward vs. reverse mapping


