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Symbol table review

guarantee average case
ordered

implementation
ops?

sequential search

(unordered list) N N N N N N
binary search log N . N ou N y v »
(ordered array) 02 0g
55T N N N logN  logN VN v
goal (log N) (log N) log N log N log N log N v

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

key
interface

equals()

compareTo()

compareTo()

compareTo()



3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.
e 2-node: one key, two children.
« 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

@ how to maintain?

3-node 2-node
smaller than E E J e
\ larger than J

OO
AN

between E and | null link



2-3 tree demo

Search.

« Compare search key against keys in node.
e Find interval containing search key. @

« Follow associated link (recursively).

search for H

O
E ) (R)

OENOIOINOING)
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2-3 tree: insertion

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.

insert G



2-3 tree: insertion

Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
« Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z




2-3 tree construction demo

insert S
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2-3 tree construction demo

2-3 tree



2-3 tree: global properties

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node
— X
offe fi (d e) . (b d e)
(a) ()

parent is a 2-node

left (d)
(a)
cd

l

middle (a e) 1 C e
b cd (b)  (d)

l

(b &
()
right (@) . right (@ b) (a b d)
(b)  (d) () (el
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2-3 tree: performance

Splitting a 4-node is a local transformation: constant number of operations.

/@\
b cd

less between\_  /between\ /between\ /between greater
than a aandb band c candd dand e than e
d C e

(b, (d)

less between\  /between\ /between\ /between greater
than a aandb band c c and d dand e than e
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Balanced search trees: quiz 1

What is the height of a 2-3 tree with N keys in the worst case?

A. ~logs N

B. ~logo N

C. ~2logmN
D. ~N

E. Idon't know.



2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
« Worst case: IgN. [all 2-nodes]
« Best case: logsN =.6311gN. [all 3-nodes]
« Between 12 and 20 for a million nodes.
« Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

13



ST implementations: summary

implementation

sequential search
(unordered list)

binary search
(ordered array)

BST

2-3 tree

guarantee average case

ordered

ops?

N

log N

N

log N

N N N
N log N N
N log N log N

log N log N log N

but hidden constant c is large
(depends upon implementation)

N

VN

log N

key
interface

equals()

compareTo()

compareTo()

compareTo()
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2-3 tree: implementation?

Direct implementation is complicated, because:
e Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.
« Need to move back up the tree to split 4-nodes.
« Large number of cases for splitting.

fantasy code

public void put(Key key, Value val)
{
Node x = root;
while (x.getTheCorrectChild(key) != null)
{
x = X.getTheCorrectChildKey();
if (x.1s4Node()) x.split(Q);
¥
if (x.1s2Node()) x.make3Node(key, val);
else if (x.is3Node()) x.makedNode(key, val);

Bottom line. Could do it, but there's a better way.

15
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How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
« No way to tell a 3-node from a 2-node.
« Cannot map from BST back to 2-3 tree.

Approach 2. Regular BST with red "glue” nodes.
« Wastes space, wasted link.
« Code probably messy.

Approach 3. Regular BST with red "glue” links.
« Widely used in practice.
o Arbitrary restriction: red links lean left.

|



Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.

2. Use "internal” left-leaning links as "glue"” for 3-nodes.

3-node

less between greater
than a a andb than b

2-3 tree

@ A larger key is root
greater
than b
less between
than a aandb

black links connect

red links "glue 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

18



Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red—black tree

2-3 tree

19



An equivalent definition

A BST such that:
« No node has two red links connected to it.
« Every path from root to null link has the same number of black links.

« Red links lean left. \

"perfect black balance”

20



Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

N\

but runs faster because
of better balance

public Value get(Key key)

{
Node x = root;
while (x !'= null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
by
return null;
}

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

21



Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
{

Key key;

Value val;

Node Teft, right;

boolean color; // color of parent 1ink
}

private boolean isRed(Node x)

{

1f (x == null) return false;

return x.color == RED;
¥

null links are black

h.right.color

.~ is BLACK

22



Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
« Symmetric order.
e Perfect black balance.
[ but not necessarily color invariants ]

right-leaning two red children left-left red left-right red
red link (a temporary 4-node) (a temporary 4-node) (a temporary 4-node)

How? Apply elementary red-black BST operations: rotation and color flip.

23



Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(before) private Node rotatelLeft(Node h)
{
h assert 1sRedCh.right);
Node x = h.right;
X h.right = x.left;
less X.left = h;
than E x.color = h.color;
h.color = RED;
between greater return X;
EandS than S }

Invariants. Maintains symmetric order and perfect black balance.

24



Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after) private Node rotatelLeft(Node h)
{
X assert 1sRedCh.right);
Node x = h.right;
h h.right = x.left;
greater X.left = h;
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S }

Invariants. Maintains symmetric order and perfect black balance.

25



Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(Letone) private Node rotateRight(Node h)
{
L assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
greater X.right = h;
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E EandS }

Invariants. Maintains symmetric order and perfect black balance.
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Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after) private Node rotateRight(Node h)
{
X assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less X.right = h;
than E x.color = h.color;
h.color = RED;
between greater return X;
EandS than S }

Invariants. Maintains symmetric order and perfect black balance.

27



Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors(Node

{
assert !i1sRed(h);

assert isRed(h.left);
assert i1sRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

h)
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Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node

{
assert !i1sRed(h);

assert isRed(h.left);
assert i1sRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

h)

29



Insertion into a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

o o root
search ends
@ @/at this null link
™ veur ch ends attached new node
at this null link (a) o ith red link
o root @

@ red link to
new node
e ™ containing a
converts 2-node
to 3-node

root
e

rotated left

a ™\ to make a
legal 3-node

30



Insertion into a LLRB tree

Case 1. Insert into a 2-node at the bottom.

to maintain symmetric order

e Do standard BST insert; color new link red. «<——— and perfect black balance

If new red link is a right link, rotate left.

insert C

(E)
(A IS)
(R

add new
node here

right link red
so rotate left

r LB

——

to fix color invariants

31



Insertion into a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

‘D search ends
_— at this

a null link

attached new

@ L node with

d link
e G re

colors flipped
@ «— to black

(aj (o

smaller

N search ends
at this null link

()
(b)
attached new
e ™ node with

red link

@ rotated
« right

/ pped
Btk
OgRC

between

search ends
at this null link

e

attached new

node with
@ red link

O

rotated left
rotated

« right
(C)

colors flipped
@ «— to black

()
)

8
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Insertion into a LLRB tree

Case 2. Insert into a 3-node at the bottom.

: ] : to maintain symmetric order
« Do standard BST insert; color new link red. <—— "4 perfect black balance
« Rotate to balance the 4-node (if needed).

e Flip colors to pass red link up one level. b e

« Rotate to make lean left (if needed).

inserting H two lefts in a row
G 50 rotalte right
add new
node here
right link red
so rotate left
both children red l

so flip colors

:

33



Insertion into a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

to maintain symmetric order

« Do standard BST insert; color new link red. <—— "4 perfect black balance
Rotate to balance the 4-node (if needed).

Flip colors to pass red link up one level. «— to fix color invariants

Rotate to make lean left (if needed).

Repeat case 1 or case 2 up the tree (if needed).

inserting P both children red
3 so flip colors
Q m @ \ both children
\ Q red so
add new flip colors
node here
two lefts in a row
right link red so rotate right \

so rotate left
N

both children red

so flip colors

34



Red-black BST construction demo

insert S

=

35
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Red-black BST construction demo

red-black BST
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Insertion into a LLRB tree: Java implementation

Same code for all cases.

« Right child red, left child black: rotate left.

« Left child, left-left grandchild red: rotate right.
« Both children red: flip colors.

\ right
rotate
private Node put(Node h, Key key, Value val)
{
if (h == null) return new Node(key, val, RED); N
int cmp = key.compareTo(Ch.key) ;
1f (cmp < 0) h.left = putCh.left, key, val);
else if (cmp > 0) h.right = putCh.right, key, val);
else if (cmp == 0) h.val = val;
1f (isRedCh.right) && !isRed(h.left)) h = rotateLeft(h); <«——
if (isRed(h.left) && isRed(h.Teft.left)) h = rotateRight(h); «——
1T (isRed(h.left) && isRed(h.right)) flipColors(h); «—

return h;

1

only a few extra lines of code provides near-perfect balance

h
left "
’ gg*‘i rotate ;&1

insert at bottom
(and color it red)

lean left
balance 4-node
split 4-node

37



Insertion into a LLRB tree: visualization




Insertion into a LLRB tree: visualization

(M I O 0

255 insertions in descending order



Insertion into a LLRB tree: visualization

N =255

max = 10
avg = 7.3
opt=7.0

' 1Y

.' "" l l 1

| | ] |

l l
= a

i

An‘{ 'L

H

|
e o

255 random insertions
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Balanced search trees: quiz 2

What is the height of a LLRB tree with N keys in the worst case?

A. ~logs N

B. ~logo N

C. ~2logmN
D. ~N

E. Idon't know.



Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.

Pf.
* Black height = height of corresponding 2-3 tree < lg N.
« Never two red links in-a-row.

I A‘K K‘
A A it ‘,ﬁ

Property. Height of tree is ~ 1.0 Ig N in typical applications.

42



ST implementations: summary

implementation

sequential search
(unordered list)

binary search
(ordered array)

BST

2-3 tree

red-black BST

guarantee

N N
log N N
N N

log N log N

(1ogn) (logn)

N N
N log N
N log N

log N log N

log N log N

ave rage case

N

log N

log N

log N

hidden constant c is small
(at most 2 Ilg N compares)

N

VN

log N

log N

ordered key
ops? interface

equals()
(4 compareTo()
4 compareTo()
4 compareTo()
4 compareTo()
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RED-BLACK BST (WITHOUT USING A COLOR BIT}

Red-black BST representation. BST, where each node has a color bit.

Challenge. Represent without using extra memory for color.

44



War story: why red-black?

Xerox PARC innovations. [1970s]

Alto.

GUI.
Ethernet.
Smalltalk.
InterPress.

XEROX.

Laser printing.

Bitmapped display.
WYSIWYG text editor.

Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Leo J. Guibas

Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

ABSTRACT

In this paper we present a uniform framework for the implementation
and study of balanced tree algorithms. We show how to imbed in this

Robert Sedgewick*

Program in Computer Science
and Brown University

Providence, R. L

the way down towards a lcaf. As we will sce, this has a number of
significant advantages over the older mcthods. We shall examine a
number of variations on a common theme and exhibit full
implementations  which are notable for their brevity. One
implementation is cxamined carcfully, and some propertics about its

45



War story: red-black BSTs

Telephone company contracted with database provider to build real-time

database to store customer information.

Database implementation.
« Red-black BST search, insert, and delete.

o Exceeding height limit of 80 triggered error-recovery process.

allows for up to 240 keys

_ did not rebalance
Extended telephone service outage. .~ BST during delete

e Main cause = height bound exceeded!

« Telephone company sues database provider.
e Legal testimony:

“ If implemented properly, the height of a red-black BST
with N keys is at most 2 lg N. © — expert witness

I
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File system model

Page. Contiguous block of data (e.g., a 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access

data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

48



B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M keys per node.
o At least | M /2] keys in all nodes (except root).

choose M as large as

« Every path from root to leaf has same number of links.  possible so that M keys
fit in a page
(M =1,024 is typical)

//(\\

(ACDF (1 JKLO (QR T (VwXxyYz )

a B-tree (M = 6)

49



Search in a B-tree

e Start at root.
o Check if node contains key.
« Otherwise, find interval for search key and take corresponding link.

AN

could use binary search
(but all ops are considered free)

//(\

(ACDF (1 JKLO (QR T ) (VwXxyYz )

a B-tree (M = 6)

50



Insertion in a B-tree

« Search for new key.

e Insert at bottom.

e Split nodes with A7+ 1 keys on the way back up the B-tree
(moving middle key to parent).

//(\

(ACDF (1 JKLO (QR T ) (VwXxyYz )

a B-tree (M = 6)

51



Balance in B-ree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between ~logy N and ~logu» N probes.

Pf. All nodes (except possibly root) have between | M/ /2 | and M keys.

In practice. Number of probes is at most 4. «—— M=1024; N =62 billion
logme2 N < 4

52



Balanced search trees: quiz 3

What of the following does the B in B-tree not mean?

Bayer

Balanced

A

B

C. Binary
D Boeing
E

I don't know.

“ the more you think about what the B in B-trees could mean,
the more you learn about B-trees and that is good.

— Rudolph Bayer




Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.
e Linux kernel: completely fair scheduler, Tinux/rbtree.h.
« Emacs: conservative stack scanning.

B-tree cousins. B+ tree, B*tree, B# tree, ...

B-trees (and cousins) are widely used for file systems and databases.

o« Windows: NTFS.

e Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.

« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

H ORACLE
b"HBfS DATABASE

I\/\ac
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Red-black BSTs in the wild

1
'yl m

Common sense. Sixth sense.

Together they're the
FBI's newest team.
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Red-black BSTs in the wild

ACT FOUR
FADE IN:
48 INT. FBI HQ -~ NICHT
Antonioc is at THE COMPUTER as Jess explains herself to Nicole

and Pollock. The CONFERENCE TABLE is covered with OPEN
REFERENCE BOOKS, TOURIST CUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

JESS
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black
ink?

NICOLE

Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical eguations.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

48
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