2.2 MERGESORT - mergesort - bottom-up mergesort - sorting complexity - divide-and-conquer 2.2 MERGESORT bottom-up mergesort sorting complexity divide and conquer mergesort ### Two classic sorting algorithms: mergesort and quicksort ### Critical components in the world's computational infrastructure. - Full scientific understanding of their properties has enabled us to develop them into practical system sorts. - Quicksort honored as one of top 10 algorithms of 20th century in science and engineering. ### Mergesort. [this lecture] Quicksort. [next lecture] ## Mergesort ### Basic plan. - · Divide array into two halves. - · Recursively sort each half. - Merge two halves. RGESORTEXAMPLE G M O R R S T E X A M P L E G M O R R S A E E L M P T X Mergesort overview ROBERT SEDGEWICK | KEVIN WAYNE Algorithms http://algs4.cs.princeton.edu ### Abstract in-place merge demo Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi]. ### Mergesort: Transylvanian-Saxon folk dance #### http://www.youtube.com/watch?v=XaqR3G_NVoo ### Abstract in-place merge demo Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi]. ### Merging: Java implementation _ ### Mergesort quiz 1 How many calls to less() does merge() make in the worst case to merge two subarrays of length N/2 into an array of length N. Assume N is even. - A. N/2 - **B.** N/2+1 - C. N-1 - **D.** *N* - E. I don't know. 9 ### Mergesort: trace ``` 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M E R G E S O R T E X A merge(a, aux, 0, 0, 1) merge(a, aux, 2, 2, 3) G merge(a, aux, 0, 1, 3) E G merge(a, aux, 4, 4, 5) merge(a, aux, 6, 6, 7) merge(a, aux, 4, 5, 7) S merge(a, aux, 0, 3, 7) merge(a, aux, 8, 8, 9) merge(a, aux, 10, 10, 11) merge(a, aux, 8, 9, 11) merge(a, aux, 12, 12, 13) merge(a, aux, 14, 14, 15) merge(a, aux, 12, 13, 15) G M O R R S A E E L M P T X merge(a, aux, 8, 11, 15) merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X ``` ### Mergesort: Java implementation ``` public class Merge { private static void merge(...) { /* as before */ } private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) { if (hi <= lo) return; int mid = lo + (hi - lo) / 2; sort(a, aux, lo, mid); sort(a, aux, mid+1, hi); merge(a, aux, lo, mid, hi); } public static void sort(Comparable[] a) { Comparable[] aux = new Comparable[a.length]; sort(a, aux, 0, a.length - 1); } }</pre> ``` hi Mergesort quiz 2 Which of the following subarray lengths will occur when running mergesort on an array of length 12? mid 10 11 12 13 14 15 16 17 18 19 **A.** { 1, 2, 3, 4, 6, 8, 12 } lo. - **B.** { 1, 2, 3, 6, 12 } - **C.** { 1, 2, 4, 8, 12 } - **D.** { 1, 3, 6, 9, 12 } - E. I don't know. 10 12 result after recursive call ### Mergesort: animation nttp://www.sorting-aigorithms.com/merge-sort 13 15 ## Mergesort: empirical analysis ### Running time estimates: - Laptop executes 108 compares/second. - Supercomputer executes 1012 compares/second. | | | ins | sertion sort (| N ²) | mergesort (N log N) | | | | | | |------|------|----------|----------------|------------------|---------------------|----------|---------|--|--|--| | comp | uter | thousand | million | billion | thousand | million | billion | | | | | hon | 1e | instant | 2.8 hours | 317 years | instant | 1 second | 18 min | | | | | sup | er | instant | 1 second | 1 week | instant | instant | instant | | | | Bottom line. Good algorithms are better than supercomputers. ### Mergesort: animation http://www.sorting-algorithms.com/merge-sort #### - 1- ## Mergesort analysis: number of compares **Proposition.** Mergesort uses $\leq N \lg N$ compares to sort an array of length N. Pf sketch. The number of compares C(N) to mergesort an array of length N satisfies the recurrence: $$C(N) \le C(\lceil N/2 \rceil) + C(\lfloor N/2 \rfloor) + N-1$$ for $N > 1$, with $C(1) = 0$. | Output | Institute Institut We solve this simpler recurrence, and assume N is a power of 2: $$D(N) = 2D(N/2) + N$$, for $N > 1$, with $D(1) = 0$. result holds for all N (analysis cleaner in this case) ### Divide-and-conquer recurrence Proposition. If D(N) satisfies D(N) = 2D(N/2) + N for N > 1, with D(1) = 0, then $D(N) = N \lg N$. Pf by picture. [assuming *N* is a power of 2] 17 19 ### Mergesort analysis: memory Proposition. Mergesort uses extra space proportional to N. Pf. The array aux[] needs to be of length N for the last merge. Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory. Ex. Insertion sort, selection sort, shellsort. Challenge 1 (not hard). Use aux[] array of length $\sim \frac{1}{2} N$ instead of N. Challenge 2 (very hard). In-place merge. [Kronrod 1969] ### Mergesort analysis: number of array accesses Proposition. Mergesort uses $\leq 6 N \lg N$ array accesses to sort an array of length N. Pf sketch. The number of array accesses A(N) satisfies the recurrence: $$A(N) \le A([N/2]) + A([N/2]) + 6N \text{ for } N > 1, \text{ with } A(1) = 0.$$ Key point. Any algorithm with the following structure takes $N \log N$ time: Notable examples. FFT, hidden-line removal, Kendall-tau distance, ... ### Mergesort quiz 3 Is our implementation of mergesort stable? - A. Yes. - **B.** No, but it can be modified to be stable. - C. No, mergesort is inherently unstable. - **D.** I don't remember what stability means. - E. I don't know. a sorting algorithm is stable if it preserves the relative order of equal keys input C A1 B A2 A3 sorted A3 A1 A2 B C not stable 18 ### Stability: mergesort Proposition. Mergesort is stable. ``` public class Merge { private static void merge(...) { /* as before */ } private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) { if (hi <= lo) return; int mid = lo + (hi - lo) / 2; sort(a, aux, lo, mid); sort(a, aux, mid+1, hi); merge(a, aux, lo, mid, hi); } public static void sort(Comparable[] a) { /* as before */ } }</pre> ``` Pf. Suffices to verify that merge operation is stable. 21 ### Mergesort: practical improvements Use insertion sort for small subarrays. - Mergesort has too much overhead for tiny subarrays. - Cutoff to insertion sort for ≈ 10 items. ``` private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) { if (hi <= lo + CUTOFF - 1) { Insertion.sort(a, lo, hi); return; } int mid = lo + (hi - lo) / 2; sort (a, aux, lo, mid); sort (a, aux, mid+1, hi); merge(a, aux, lo, mid, hi); }</pre> ``` ### Stability: mergesort Proposition. Merge operation is stable. Pf. Takes from left subarray if equal keys. 2 ### Mergesort with cutoff to insertion sort: visualization ### Mergesort: practical improvements ### Stop if already sorted. - Is largest item in first half ≤ smallest item in second half? - Helps for partially-ordered arrays. ``` private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) { if (hi <= lo) return; int mid = lo + (hi - lo) / 2; sort (a, aux, lo, mid); sort (a, aux, mid+1, hi); if (!less(a[mid+1], a[mid])) return; merge(a, aux, lo, mid, hi); }</pre> ``` ### Java 6 system sort Basic algorithm for sorting objects = mergesort. - Cutoff to insertion sort = 7. - Stop-if-already-sorted test. - Eliminate-the-copy-to-the-auxiliary-array trick. #### Arrays.sort(a) http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/tip/src/share/classes/java/util/Arrays.java ### Mergesort: practical improvements Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call. ``` private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) int i = lo, j = mid+1; for (int k = lo; k \ll hi; k++) (i > mid) aux[k] = a[j++]; if else if (j > hi) aux[k] = a[i++]; merge from a[] to aux[] else if (less(a[j], a[i])) aux[k] = a[j++]; else aux[k] = a[i++]; private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) if (hi <= lo) return; int mid = 10 + (hi - 10) / 2; assumes aux[] is initialize to a[] once, sort (aux, a, lo, mid); before recursive calls sort (aux, a, mid+1, hi); merge(a, aux, lo, mid, hi); switch roles of aux[] and a[] ``` # 2.2 MERGESORT mergesort bottom-up mergesort sorting complexity divide and conquer ROBERT SEDGEWICK | KEVIN WAYNE Algorithms http://algs4.cs.princeton.edu ### Bottom-up mergesort ### Basic plan. - Pass through array, merging subarrays of size 1. - Repeat for subarrays of size 2, 4, 8, ``` a[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MERGESORTEXAMPLE merge(a, aux, 0, 0, 1) E M R G E S O R T E X A merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E G M R E O R S E T A X M P E L merge(a, aux, 4, 5, 7) merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X ``` ### Bottom-up mergesort: Java implementation ``` public class MergeBU { private static void merge(...) { /* as before */ } public static void sort(Comparable[] a) { int N = a.length; Comparable[] aux = new Comparable[N]; for (int sz = 1; sz < N; sz = sz+sz) for (int lo = 0; lo < N-sz; lo += sz+sz) merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1)); } }</pre> ``` Bottom line. Simple and non-recursive version of mergesort. ### Mergesort: visualizations bottom-up mergesort (cutoff = 12) 31 ### Mergesort quiz 4 Which is faster in practice: top-down mergesort or bottom-up mergesort? - A. Top-down (recursive) mergesort. - B. Bottom-up (nonrecursive) mergesort. - C. About the same. - **D.** I don't know. 3 ### Natural mergesort Idea. Exploit pre-existing order by identifying naturally-occurring runs. #### input | 1 | 5 | 10 | 16 | 3 | 4 | 23 | 9 | 13 | 2 | 7 | 8 | 12 | 14 | |---|---|----|----|---|---|----|---|----|---|---|---|----|----| | | | | | | | | | | | | | | | ### first run #### second run | 1 | 5 | 10 | 16 | 3 | 4 | 23 | 9 | 13 | 2 | 7 | 8 | 12 | 14 | |---|---|----|----|---|---|----|---|----|---|---|---|----|----| |---|---|----|----|---|---|----|---|----|---|---|---|----|----| | m | erge t | wo rui | ns | | | | | | | | | | | | |---|--------|--------|----|---|----|----|----|---|----|---|---|---|----|----| | | 1 | 3 | 4 | 5 | 10 | 16 | 23 | 9 | 13 | 2 | 7 | 8 | 12 | 14 | Tradeoff. Fewer passes vs. extra compares per pass to identify runs. ### **Timsort** - · Natural mergesort. - Use binary insertion sort to make initial runs (if needed). - · A few more clever optimizations. #### Intro This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than lg(N!) comparisons needed, and as few as N-1), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays. In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some hard-won measure of memory efficiency. Consequence. Linear time on many arrays with pre-existing order. Now widely used. Python, Java 7, GNU Octave, Android, http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/tip/src/share/classes/java/util/Arrays.java ## Commercial break https://www.youtube.com/watch?v=tSEHDBSynVo # 2.2 MERGESORT mergesort bottom-up mergesort sorting complexity divide-and-conquer ROBERT SEDGEWICK | KEVIN WAYNE Algorithms http://algs4.cs.princeton.edu ### Complexity of sorting Computational complexity. Framework to study efficiency of algorithms for solving a particular problem *X*. Model of computation. Allowable operations. Cost model. Operation counts. Upper bound. Cost guarantee provided by some algorithm for *X*. Lower bound. Proven limit on cost guarantee of all algorithms for *X*. Optimal algorithm. Algorithm with best possible cost guarantee for X. | model of computation | decision tree ← | can access information only through compares | | | | |----------------------|-------------------------|--|--|--|--| | cost model | # compares | (e.g., Java Comparable framework | | | | | upper bound | ~ N lg N from mergesort | | | | | | lower bound | ? | | | | | | optimal algorithm | ? | | | | | complexity of sorting lower bound ~ upper bound ## Compare-based lower bound for sorting Proposition. Any compare-based sorting algorithm must use at least $\lg(N!) \sim N \lg N$ compares in the worst-case. ### Pf. - Assume array consists of N distinct values a_1 through a_N . - Worst case dictated by height h of decision tree. - Binary tree of height h has at most 2^h leaves. - N! different orderings \Rightarrow at least N! leaves. ### Decision tree (for 3 distinct keys a, b, and c) Compare-based lower bound for sorting Proposition. Any compare-based sorting algorithm must use at least $\lg(N!) \sim N \lg N$ compares in the worst-case. ### Pf. - Assume array consists of N distinct values a_1 through a_N . - Worst case dictated by height h of decision tree. - Binary tree of height h has at most 2h leaves. - N! different orderings \Rightarrow at least N! leaves. ### Complexity of sorting Model of computation. Allowable operations. Cost model. Operation count(s). Upper bound. Cost guarantee provided by some algorithm for *X*. Lower bound. Proven limit on cost guarantee of all algorithms for *X*. Optimal algorithm. Algorithm with best possible cost guarantee for *X*. | model of computation | decision tree | |----------------------|----------------| | cost model | # compares | | upper bound | $\sim N \lg N$ | | lower bound | $\sim N \lg N$ | | optimal algorithm | mergesort | complexity of sorting First goal of algorithm design: optimal algorithms. 4 ### Complexity results in context (continued) Lower bound may not hold if the algorithm can take advantage of: - The initial order of the input. - Ex: insertion sort requires only a linear number of compares on partially-sorted arrays. - The distribution of key values. - Ex: 3-way quicksort requires only a linear number of compares on arrays with a constant number of distinct keys. [stay tuned] - The representation of the keys. Ex: radix sorts require no key compares — they access the data via character/digit compares. ### Complexity results in context Compares? Mergesort is optimal with respect to number compares. Space? Mergesort is not optimal with respect to space usage. Lessons. Use theory as a guide. - Ex. Design sorting algorithm that guarantees $\sim \frac{1}{2} N \lg N$ compares? - Ex. Design sorting algorithm that is both time- and space-optimal? Sorting summary | | inplace? | stable? | best | average | worst | remarks | |-----------|----------|---------|------------------|------------------|------------------|--| | selection | ~ | | ½ N ² | ½ N ² | ½ N ² | N exchanges | | insertion | V | ~ | N | ½ N ² | ½ N ² | use for small ${\it N}$ or partially ordered | | shell | V | | $N \log_3 N$ | ? | $c N^{3/2}$ | tight code;
subquadratic | | merge | | V | ½ N lg N | $N \lg N$ | N lg N | $N \log N$ guarantee; stable | | timsort | | V | N | $N \lg N$ | N lg N | improves mergesort when preexisting order | | ? | V | V | N | $N \lg N$ | N lg N | holy sorting grail | # 2.2 MERGESORT mergesortbottom-up mergesortsorting complexity divide-and-conquer ROBERT SEDGEWICK | KEVIN WAYNE http://algs4.cs.princeton.edu Algorithms # **I**NTERVIEW QUESTION: SHUFFLE A LINKED LIST Problem. Given a singly-linked list, rearrange its nodes uniformly at random. Assumption. Access to a perfect random-number generator. all N! permutations equally likely Version 1. Linear time, linear extra space. Version 2. Linearithmic time, logarithmic or constant extra space.