AlgOI‘ltth ROBERT SEDGEWICK | KEVIN WAYNE Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
 Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
« Quicksort honored as one of top 10 algorithms of 20th century

2.2 MERGESORT in science and engineering.

a \\‘ Q
e’ Js

Quicksort. [next lecture]

» bottom-up mergesort

. . s,
» sorting complexity =’

Algorithms

OURTH EDITION

» divide-and-conquer

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Mergesort
Basic plan.

« Divide array into two halves.
» Recursively sort each half.
« Merge two halves.

2.2 MERGESORT

imlput M E R G E S O R T E X A M P L E

» mergesort sortlefthalf E E G M 0O R R S
sort right half A E E L M P T X
mergeresults A E E E E G L M M O P R R S T X
A 1 gO r 1 th ms Mergesort overview
ROBERT SEDGEWICK | KEVIN WAYNE FiISt Draﬁ
http://algs4.cs.princeton.edu Of a
Report on the
EDVAC

John von Neumann

Abstract in-place merge demo Abstract in-place merge demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi], Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi]. replace with sorted subarray a[1o] to a[hi].
lo mid mid+1 hi lo hi
al] E E G M R A C E R T afl A C E E E G M R R T
~ ~ —
sorted sorted
sorted

®,

Mergesort: Transylvanian-Saxon folk dance Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)

{
for (int k = To; k <= hi; k++)
aux[k] = alk]; copy
int i = lo, j = mid+1;
for (int k = To; k <= hi; k++)
{
if ('i > mid) a[k] = aux[j++]; merge
else if (§ > hi) alk] = aux[i++];
else if (less(aux[jl, aux[i])) alk] = aux[j++];
else alk] = aux[i++];
}
}
To mid j hi
aUX[]AGLORIHIMST

b[2] b[3]: b[4] 5[51 bi6] bl7] b[8] b[9}

a[l A G H I L M

Mergesort quiz 1

Mergesort: Java implementation

How many calls to 1ess() does merge() make in the worst case to merge

public class Merge

two subarrays of length N/2 into an array of length N. Assume N is even. {
private static void merge(...)
{ /* as before */ }
A. N/2
private static void sort(Comparable[] a, Comparable[] aux, int 1o, int hi)
{
B. N/2+1 if (hi <= 10) return;
int mid = To + Chi - To) / 2;
C. N-1 sort(a, aux, lo, mid);
sort(a, aux, mid+l, hi);
D. N merge(a, aux, lo, mid, hi);
}
E. Idon't know.
public static void sort(Comparable[] a)
{
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length - 1);
}

Mergesort: trace

lo mid hi

10 11 12 13 14 15 16 17 18 19

Mergesort quiz 2

1§ ?1
merge(a, aux, 0, 0, 1)
merge(a, aux, 2, 2, 3)

merge(a, aux, 0, 1, 3)
merge(a, aux, 4 4 5)
merge(a, aux, 6

merge(a, aux, 4, 5, 7)

merge(a, aux, 0, 3, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)

merge(a, aux, 8, 9, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)

merge(a, aux, 12, 13, 15)

merge(a, aux, 8, 11, 15)
merge(a, aux, 0, 7, 15)

Which of the following subarray lengths will occur when running mergesort

all on an array of length 12?
0 1 5 6 7 9 10 11 12 13 14 15
M E S 0 R E X A M P L E
E M
A. {1,2,3,4,6, 8, 12 }
E G
s B. {1,236 12}
0O R
0 R S C. {1,24,8 12}
E E R R S
T D. {1,3,6,9, 12}
A X
ET X E I don't know.
M P
E L
E L M P
E E L MP T X
A E G L M O PRR ST X

result after recursive call

Mergesort: animation

50 random items

http:/ /www.sorting-algorithms.com/merge-sort

‘l‘b

Mergesort: empirical analysis

algorithm position
in order
current subarray

not in order

Running time estimates:
« Laptop executes 108 compares/second.
« Supercomputer executes 1012 compares/second.

insertion sort (N2) mergesort (N log N)

home instant 2.8 hours 317 years instant 1 second

super instant 1 second 1 week instant instant

Bottom line. Good algorithms are better than supercomputers.

18 min

instant

Mergesort: animation

50 reverse-sorted items

algorithm position
in order

current subarray

Mergesort analysis: number of compares

‘l‘b

not in order
http://www.sorting-algorithms.com/merge-sort

Proposition. Mergesort uses < Nlg N compares to sort an array of length N.

Pf sketch. The number of compares C(N) to mergesort an array of length N
satisfies the recurrence:

C(N) < C([N/2]) + C(N/2])) + N—1 for N >1, with C(1)=0.
)))

left half right half merge

We solve this simpler recurrence, and assume N is a power of 2:

\ result holds for all N
D(N) = 2D(N/2) + N’ for N > 1, with D(l) =0. (analysis cleaner in this case)

—_

Divide-and-conquer recurrence Mergesort analysis: number of array accesses

Proposition. If D(N) satisfies D(N)=2D(N/2)+ N for N > 1, with D(1)=0, Proposition. Mergesort uses < 6 Nlg N array accesses to sort an array of
then D(N) =Nlg N. length N.
Pf by picture. [assuming N is a power of 2] Pf sketch. The number of array accesses 4 (N) satisfies the recurrence:
D) N N AWN) < A(N/2)) + A(N/2)) + 6N for N >1, with 4(1)=0.
D@2 Do) o . Key point. Any algorithm with the following structure takes Nlog N time:
/ \ / \ public static void f(int N)
D(N/4) D(N/4) D(N/4) D(N/4) 4 (N/4) =N ¢

gN if (N == 0) return;
f(N/2); <—— solve two problems
f(N/2); <«—— of half the size

D(N./ &) D(N./ &) DO/ 8) DUV 8) D(N./ &) D(N./ & DO/ B) DAV 8) 8(N/8) =N Tinear(N); «———— do alinear amount of work
."' “'. '/" “‘. ."' “'. '/" “‘. ."' “'. '/" “‘. ."' “'. '/" “‘. }
T(N) =NlgN Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...
17
Mergesort analysis: memory Mergesort quiz 3
Proposition. Mergesort uses extra space proportional to N. Is our implementation of mergesort stable?

Pf. The array aux[] needs to be of length N for the last merge.

A. Yes.
two sorted subarrays
B. No, but it can be modified to be stable.
C. No, mergesort is inherently unstable.
A CDGHTIMNWUV B EF J OP QR ST
D. [don't remember what stability means.
AB CDUEF GHTI J MNUOUPAQRSTUV
E. [Idon't know. \
a sorting algorithm is stable if it
merged result preserves the relative order of equal keys

Def. A sorting algorithm is in-place if it uses =< clog N extra memory.
. . input C Al B A A3
Ex. Insertion sort, selection sort, shellsort.

sorted A3 Ar A2 B C
Challenge 1 (not hard). Use aux[] array of length ~ 1 N instead of N.

not stable

Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Stability: mergesort

Proposition. Mergesort is stable.

public class Merge
{

private static void merge(...)
{ /* as before */ }

private static void sort(Comparable[] a, Comparable[] aux, int 1o, int hi)
{

if (hi <= To) return;

int mid = To + Chi - To) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+l, hi);
merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)
{ /* as before */ }

Pf. Suffices to verify that merge operation is stable.

Mergesort: practical improvements

Use insertion sort for small subarrays.
« Mergesort has too much overhead for tiny subarrays.
« Cutoff to insertion sort for = 10 items.

private static void sort(Comparable[] a, Comparable[] aux, int 1o, int hi)
{
if (hi <= 1o + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
h;
int mid = To + Chi - 1o) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+l, hi);
merge(a, aux, lo, mid, hi);

21

28]

Stability: mergesort

Proposition. Merge operation is stable.

private static void merge(...)

{
for (int k = To; k <= hi; k++)
aux[k] = a[k];
int i = Tlo, j = mid+1;
for (int k = 1o; k <= hi; k++)
{
if G > mid) alk] = aux[j++];
else if (3 > hi) alk] = aux[i++];
else if (less(aux[j], aux[i])) al[k] = aux[j++];
else alkl = aux[i++];
}
}
o 1 2 3 4 5 6 7 8 9
A A2 As B D Az As C E F

Pf. Takes from left subarray if equal keys.

Mergesort with cutoff to insertion sort: visualization

iy -|I|||||“I“
second subarray .-lll“““l
firstmerge ..-nllllll““““"““
il
...|II|||III
..... il
first half sorted _..m .mlllllllllll|||||||||“|“““““"II"“
..--lllllllll
...-llllll“
......-mnlllll““l"l
....||II|||“

..... nmmmmmm
second half sorted _..oorott lHTENEEEEEUIEEELIEEEUIEEEREUEEENINEL .o sane u|||||IIIIII|||||“““““I“IIIIIII“
result __.ceessnnnnl m||||||||IIIIIIII|||||||||““““I“““““““““II“““I“““IIIIIIIII““

22

24

Mergesort: practical improvements

Stop if already sorted.
* Is largest item in first half < smallest item in second half?
» Helps for partially-ordered arrays.

ABCDEFGHI@@NOPQRSTUV

AAB CDEFGHTIJJ M NOWPAOQRSTUYV

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if Chi <= To) return;

int mid = 1o + Chi - 1o0) / 2;

sort (a, aux, lo, mid);

sort (a, aux, mid+l, hi);

if (!less(Ca[mid+1], a[mid])) return;

merge(a, aux, lo, mid, hi);

25

Java 6 system sort

Basic algorithm for sorting objects = mergesort.
« Cutoff to insertion sort = 7.
 Stop-if-already-sorted test.
« Eliminate-the-copy-to-the-auxiliary-array trick.

Arrays.sort(a)

(:(g) Java

—

27

Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space)
by switching the role of the input and auxiliary array in each recursive call.

private static void merge(Comparable[] a, Comparable[] aux, int To, int mid, int hi)
{

int i = lo, j = mid+1;

for (int k = 1o; k <= hi; k++)

{
if (i > mid) aux[k] = a[j++]1;
else if (j > hi) aux[k] = a[i++];
else if (less(al[jl, a[i1)) aux[k] = al[j++]; < mergefroma[] toaux[]
else aux[k] = a[i++];
}

}

private static void sort(Comparable[] a, Comparable[] aux, int Tlo, int hi)

{
if (hi <= 10) return; T
int mid = To + ¢hi - 10) / 2;
sort (aux, a, lo, mid);
sort (aux, a, mid+l, hi);
merge(a, aux, lo, mid, hi);

assumes aux[] is initialize to a[] once,
before recursive calls

switch roles of aux[] and a[]

2.2 MERGESORT

» bottom-up mergesort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

26

Bottom-up mergesort Bottom-up mergesort: Java implementation

Basic plan.
« Pass through array, merging subarrays of size 1. public class MergeBU
» Repeat for subarrays of size 2, 4, 8, {
private static void merge(...)
alil { /* as before */ }
0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
sz=1 M ERGESORTEIXAMPLE public static void sort(Comparable[] a)
merge(a, aux, 0, 0, 1) E M {
merge(a, aux, 2, 2, 3) G R : _ .
merge(a, aux, 4, 4, 5) E S int N = a.length;
merge(a, aux, 6, 6, 7) 0 R Comparable[] aux = new Comparable[N];
mergegay aux, lg, 13, 19133 E T N for (int sz = 1; sz < N; sz = sz+s2)
merge(a, aux, g 5 : _ . - . —
e, AU, 12, A2 1Y Mop for (int 1o = 0; 1o < N-sz; 1o += sz-_rsz)
merge(a, aux, 14, 14, 15) E L merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
sz=2 }
merge(a, aux, O, 1, 3) E G M R }
merge(a, aux, 4, 5, 7) E O R S
merge(a, aux, 8, 9, 11) A E T X
merge(a, aux, 12, 13, 15) E L M P
sz=4
merge(a, aux, 0, 3, 7) E E GM O R R S
merge(a, aux, 8, 11, 15) A E E L M P T X
sz=8
@y ey Wy 7y 1) L Bottom line. Simple and non-recursive version of mergesort.
29
Mergesort: visualizations Mergesort quiz 4

Which is faster in practice: top-down mergesort or bottom-up mergesort?

Top-down (recursive) mergesort.
Bottom-up (nonrecursive) mergesort.

About the same.

S nNn = »

I don't know.

top-down mergesort (cutoff = 12) bottom-up mergesort (cutoff = 12)
31

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally-occurring runs.

input

1 5 10
first run

1 5 10
second run

1 5 10

merge two runs

1 3 4

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

16 3 4 23 9 13 2 7 8

16 3 4 23 9 13 2 7 8

Commercial break

14

https://www.youtube.com/watch?v=tSEHDBSynVo

33

35

Timsort

« Natural mergesort.
« Use binary insertion sort to make initial runs (if needed).
« A few more clever optimizations.

This describes an adaptive, stable, natural mergesort, modestly called
timsort (hey, I earned it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1g(N!) comparisons needed, and
as few as N-1), yet as fast as Python's previous highly tuned samplesort
hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right,
alternately identifying the next run, then merging it into the previous
runs "intelligently". Everything else is complication for speed, and some
hard-won measure of memory efficiency.

Consequence. Linear time on many arrays with pre-existing order.

Now widely used. Python, Java 7, GNU Octave, Android,

http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/tip/src/share/classes/java/util /Arrays.java

2.2 MERGESORT

Tim Peters

34

» sorting complexity

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms
for solving a particular problem X.

Model of computation. Allowable operations.

Cost model. Operation counts.

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of all algorithms for X.

Optimal algorithm. Algorithm with best possible cost guarantee for X.
™\ lower bound ~ upper bound

decision tree <«——— can access information
only through compares

model of computation

cost model # compares (e.g., Java Comparable framework)
upper bound ~ N lg N from mergesort
lower bound ?
optimal algorithm ?
complexity of sorting 37

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg(N!) ~ NlgN compares in the worst-case.

Pf.
* Assume array consists of N distinct values a; through aw.
» Worst case dictated by height i of decision tree.
* Binary tree of height » has at most 2" leaves.
« N ! different orderings = at least N! leaves.

at least N! leaves

no more than 2" leaves /

39

Decision tree (for 3 distinct keys a, b, and ¢)

a<b

height of tree =
worst-case number

of compares

code between compares
(e.g., sequence of exchanges)

a<c

yes

abc a<c bac b<c

each leaf corresponds to one (and only one) ordering;
(at least) one leaf for each possible ordering

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg(N!) ~ Nlg N compares in the worst-case.

Pf.
* Assume array consists of N distinct values a; through aw.
» Worst case dictated by height i of decision tree.

Binary tree of height 4 has at most 2" leaves.

N ! different orderings = at least N! leaves.

2h > #leaves > N!

= h>1g(N!) ~ NIgN

T

Stirling's formula

38

40

Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

model of computation decision tree
cost model # compares
upper bound ~NlgN
lower bound ~NlgN

optimal algorithm mergesort

complexity of sorting

First goal of algorithm design: optimal algorithms.

Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

« The initial order of the input.
Ex: insertion sort requires only a linear number of compares on

partially-sorted arrays.

« The distribution of key values.
Ex: 3-way quicksort requires only a linear number of compares on

arrays with a constant number of distinct keys. [stay tuned]

» The representation of the keys.
Ex: radix sorts require no key compares — they access the data
via character/digit compares.

41

43

Complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.
Ex. Design sorting algorithm that guarantees ~ 2 Nlg N compares?
Ex. Design sorting algorithm that is both time- and space-optimal?

Sorting summary

inplace? | stable? best average worst remarks
v

selection VN2 N2 B N2 N exchanges

use for small N
or partially ordered

insertion v v N 4 N2 L N2

X tight code;
shell v Nlogs N ? ¢ N32 _
= subquadratic
merge v BNIgN NIgN NlgN Nlog th:,?rantee;
stable

improves mergesort

timsort v N NlgN NlgN when preexisting order

v v N NlgN NlgN holy sorting grail

42

44

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 MERGESORT

» divide-and-conquer

INTERVIEW QUESTION: SHUFFLE A LINKED LIST

Problem. Given a singly-linked list, rearrange its nodes uniformly at random.
Assumption. Access to a perfect random-number generator. N
all N! permutations
equally likely
Version 1. Linear time, linear extra space.

Version 2. Linearithmic time, logarithmic or constant extra space.

first
input l
286 — 5 3& 4 S5 6k — 5 7H — 5
first
shuffled }

S — 5 Ok > 2 7 3% — 5 4% —5

46

