
Program Verification

1

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Techniques for program verification

2

Famous Bugs

The first bug: A moth in a relay (1945)

At the Smithsonian (currently not on display)

(in)Famous Bugs

• Safety-critical systems

Therac-25 medical radiation device (1985)

At least 5 deaths attributed to a race condition in software

(in)Famous Bugs

• Mission-critical systems

Ariane-5 self-destruction (1995)

SW interface issue, backup failed

Cost: $400M payload

The Northeast Blackout (2003)

Race condition in power control software

Cost: $4B

(in)Famous Bugs

• Commodity hardware / software

Pentium bug (1994)

Float computation errors

Cost: $475M

Code Red worm on MS IIS server (2001)

Buffer overflow exploited by worm

Infected 359k servers

Cost: >$2B

Common Bugs

• Runtime bugs
• Null pointer dereference (access via a pointer that is Null)

• Array buffer overflow (out of bound index)

• Can lead to security vulnerabilities

• Uninitialized variable

• Division by 0

• Concurrency bugs
• Race condition (flaw in accessing a shared resource)

• Deadlock (no process can make progress)

• Functional correctness bugs
• Input-output relationships

• Interface properties

• Data structure invariants

• …

8

Program Verification

Ideally: Prove that any given program is correct

General

Program

Checkerprogram.c

Right or Wrong
Specification

?
In general: Undecidable

This lecture: For some (kinds of) properties, a Program Verifier

can provide a proof (if right) or a counterexample (if wrong)

9

Program Testing (Lecture 6)

Pragmatically: Convince yourself that a specific

program probably works

“Program testing can be quite effective for showing the presence

of bugs, but is hopelessly inadequate for showing their absence.”

‒ Edsger Dijkstra

Specific

Testing

Strategyprogram.c

Probably Right

or

Certainly Wrong

Specification

10

Path Testing Example (Lecture 6)

Example pseudocode:

• Simple programs => maybe reasonable

• Complex program => combinatorial explosion!!!

• Path test code fragments

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

Path testing:

Should make sure all logical

paths are executed

How many passes

through code are

required?

Four paths for four combinations of

(condition1, condition 2): TT, TF, FT, FF

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Techniques for program verification

11

Reasoning about Programs

• Try out the program, say for x=3

• At line 4, before executing the loop: x=3, y=1, z=0

• Since z != x, we will execute the while loop

• At line 4, after 1st iteration of loop: x=3, z=1, y=1

• At line 4, after 2nd iteration of loop: x=3, z=2, y=2

• At line 4, after 3rd iteration of loop: x=3, z=3, y=6

• Since z == x, exit loop, return 6: It works!

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

Example:

factorial program

Check:

If x >= 0, then y = fac(x)

(fac is the mathematical function)

Reasoning about Programs

• Try out the program, say for x=4

• At line 4, before executing the loop: x=4, y=1, z=0

• Since z != x, we will execute the while loop

• At line 4, after 1st iteration of loop: x=4, z=1, y=1

• At line 4, after 2nd iteration of loop: x=4, z=2, y=2

• At line 4, after 3rd iteration of loop: x=4, z=3, y=6

• At line 4, after 4th iteration of loop: x=4, z=4, y=24

• Since z == x, exit loop, return 24: It works!

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

Example:

factorial program

Check:

If x >= 0, then y = fac(x)

Reasoning about Programs

• Try out the program, say for x=1000

• At line 4, before executing the loop: x=1000, y=1, z=0

• Since z != x, we will execute the while loop

• At line 4, after 1st iteration of loop: x=1000, z=1, y=1

• At line 4, after 2nd iteration of loop: x=1000, z=2, y=2

• At line 4, after 3rd iteration of loop: x=1000, z=3, y=6

• At line 4, after 4th iteration of loop: x=1000, z=4, y=24 …

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

Want to keep going on???

Example:

factorial program

Check:

If x >= 0, then y = fac(x)

Lets try some mathematics …

• Annotate the program with “assertions” [Floyd 67]
• Assertions (at program lines) are expressed as (logic) formulas

• Here, we will use standard arithmetic

• Meaning: Assertions hold before that line is executed

• For loops, we will use an assertion called a “loop invariant”
• Invariant means that the assertion holds in each iteration of loop

• We can prove this by using induction

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

Example:

factorial program

Check:

If x >= 0, then y = fac(x)

Loop Invariant

• Loop invariant (assertion at line 4): y = fac(z)

• Try to prove by induction that the loop invariant holds
• Base case: First time at line 4, z=0, y=1, fac(0)=1, y=fac(z) holds 

• Induction hypothesis: Suppose y = fac(z) at line 4

• Induction step: In next iteration of the loop (when z!=x)

• z’ = z+1 and y’= fac(z)*z+1 = fac(z’) (z’/y’ denote updated values)

• Therefore, at line 4, y’=fac(z’), i.e., loop invariant holds again 

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

Example:

factorial program

Check:

If x >= 0, then y = fac(x)

Proof of Correctness

• Loop invariant (assertion at line 4): y = fac(z) 

• What should we do now?

• If loop condition is true, i.e., if (z!=x), execute loop again, y=fac(z)

• If the loop condition is false, i.e., if (z==x), exit the loop

• At line 8, we now know that y=fac(z) AND z==x, i.e., y=fac(x)

• Thus, at return, y = fac(x)

• Proof of correctness of the factorial program is now done 

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

Example:

factorial program

Check:

If x >= 0, then y = fac(x)

Program Verification

• Rich history in computer science

• Assigning Meaning to Programs [Floyd, 1967]

• Program is annotated with assertions (formulas in logic)

• Program is proved correct by reasoning about assertions

• An Axiomatic Basis for Computer Programming [Hoare, 1969]

• Hoare Triple: {P} S {Q}

• S: statement (or fragments) in program

• P: precondition (formula in logic)

• Q: postcondition (formula in logic)

• Meaning: If S executes from a state where P is true, and if S

terminates, then Q is true in the resulting state

• This is called “partial correctness”

• does not guarantee termination of S

• For our example: {x >= 0} y = factorial(x) {y = fac(x)}

Program Verification

• Proof Systems
• Perform reasoning using logic formulas and rules of inference

• Soundness: If assertion A is proved, then A is true

• Completeness: If assertion A is true, then A can be proved

• Hoare Logic [Hoare 69]
• Inference rules for assignments, conditionals, loops, sequence

• Given a program annotated with preconditions, postconditions, and

loop invariants

• Verification Condition (VC) can be generated automatically

• If VC is “valid”, then program is correct

• Validity of VC can be checked by a theorem-prover

• Question: Can these preconditions/postconditions/loop

invariants be generated automatically?

Automatic Program Verification

• Question: Can these preconditions/postconditions/loop

invariants be generated automatically?

• Answer: Yes! (in many cases)

• Techniques for deriving the assertions automatically
• Model checking: based on exploring “states” of programs

• Abstract interpretation: based on static analysis using

“abstractions” of programs

• … many other techniques

• Still an active area of research (after more than 45 years)!

Model Checking

• Temporal logic
• Used for specifying correctness properties

• [Pnueli, 1977]

• Model checking
• Verifying temporal logic properties by state space exploration

• [Clarke & Emerson, 1981] and [Queille & Sifakis, 1981]

Model Checker

• Model checker performs automatic state space exploration
• If all reachable states are visited and error state is not reached,

then property is proved correct

• Otherwise, it provides a counterexample (trace to error state)

Property: formula
Is error state reachable?
(Example: error state is where y != fac(x) at return)

Model
Checker

Property holds

Property fails

Proof

Counterexample

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

(may run out of memory)

• Consider viewing a program like a DFA (not quite, …)
• “State” in a program

• Line number

• Value of each program variable (not shown below)

• “Transition” in a program

• Statement in program (updates state)

• Example: factorial program

Model Checking (simplified)

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

1

2

3

4

5

6

8

y=1

z=0

z==x

z!=x

z=z+1

y=y*z

• Example: factorial program

• Number of program states
• 9 (lines)*(states of x)*(states of y)*(states of z): 9 * 232 * 232 * 232

• States are not represented explicitly, but symbolically as formulas

• e.g. (z<y) represents all program states where z is less than y

• Many other enhancements are used …

Model Checking (simplified)

1 int factorial(int x) {

2 int y = 1;

3 int z = 0;

4 while (z != x) {

5 z = z + 1;

6 y = y * z;

7 }

8 return y;

9 }

1

2

3

4

5

6

8

y=1

z=0

z==x

z!=x

z=z+1

y=y*z

F-Soft

1: void pivot_sort(int A[], int n){

2: int pivot=A[0], low=0, high=n;

3: while (low < high) {

4: do {

5: low++ ;

6: } while (A[low] <= pivot) ;

7: do {

8: high - - ;

9: } while (A[high] >= pivot);

10: swap(&A[low],&A[high]);

11: }

12: }

Array Buffer Overflow?

Line 1: n=2, A[0]=10, A[1]=10

Line 2: pivot=10, low=0, high=2

Line 5: low = 1

Line 6: A[low] <= pivot ? YES

Line 3: low < high ? YES

Line 5: low = 2

Line 6: A[low] <= pivot ?

Buffer Overflow!!!

counterexample trace

F-Soft Model Checker

Automatic tool for finding bugs in large C/C++ programs (NEC)

Summary

• Program verification
• Provide proofs of correctness for classes of properties & programs

• Testing cannot provide proofs of correctness (unless exhaustive)

• Proof systems based on logic
• Users annotate the program with assertions

• Theorem-provers perform search for proofs (with user guidance)

• Automatic verification techniques
• Program assertions are derived automatically

• But, scalability is an issue

• Explosion in sets of reachable states

• Worse for concurrent multi-threaded programs

• Need to explore all possible interleavings of different threads

• COS 597B in Fall ’15: Automatic Reasoning about Software

Course Summary

We have covered:

Programming in the large
• The C programming language

• Testing

• Building

• Debugging

• Program & programming style

• Data structures

• Modularity

• Performance

27

Course Summary

We have covered (cont.):

Under the hood
• Number systems

• Language levels tour

• Assembly language

• Machine language

• Assemblers and linkers

• Service levels tour

• Exceptions and processes

• Storage management

• Dynamic memory management

• Process management

• I/O management

• Signals

28

The Rest of the Course

Assignment 7
• Due on Dean’s Date (5/12) at 5PM

• Cannot submit late (University regulations)

• Cannot use late pass

Office hours and exam prep sessions
• Will be announced on Piazza

Final exam
• When: Tuesday 5/19, 1:30 PM

• Where: Friend Center 101

• Closed book, closed notes, no electronic devices

29

Thank you!

