Program Verification




-

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)
Reasoning about programs

Techniques for program verification




-
Famous Bugs

y?e

s Gedane daniyd s' Aaed . Tenrwy aud
LT - s»'r} = da S DA T AP IV T vk
vy e NP ane § eter) R4 Y ZVAT T
Py Taev 1. nu"by{
WJ' P ?uu

S T P ALy | (PO P g
Qm\?" A . «.n M’J
u:f_. J'I\rf“ unn 24}& ‘s:-u sNu\' 4

- r.t “u( 2

ASay

@‘l 47" ?uﬁs' F

t.h,h o f4h~1

'““ ZIF‘-}':::J*::.::U e ‘{ b"’ ‘n'h‘ {M‘Alo

e clewd Lo |

The first bug: A moth in arelay (1945)
At the Smithsonian (currently not on display)




-

(in)Famous Bugs

« Safety-critical systems

I'" R
low current high current high current
electron beam electron beam electron beam
was scanned was tracked with no target
across the field at the target > 'lightning’
Electron Mode X-Ray Mode \ THE PROBLEM

tray including the target, a flattening filter, the collimator jaws and an ion
chamber was moved OUT for "electron” mode, and IN for "photon” mode.

Therac-25 medical radiation device (1985)
At least 5 deaths attributed to a race condition in software




(in)Famous Bugs

* Mission-critical systems

003/45/7844

GeoStar 45 :
EST 14 Aug. 2003

Ariane-5 self-destruction (1995) The Northeast Blackout (2003)
SW interface issue, backup failed Race condition in power control software
Cost: $400M payload Cost: $4B



-

(in)Famous Bugs

« Commodity hardware / software

Pentium bug (1994) Code Red worm on MS IIS server (2001)
Cost: $475M Infected 359k servers

Cost: >$2B




-

Common Bugs

* Runtime bugs
* Null pointer dereference (access via a pointer that is Null)
 Array buffer overflow (out of bound index)
« Can lead to security vulnerabilities
 Uninitialized variable
* Division by O

« Concurrency bugs
« Race condition (flaw in accessing a shared resource)
« Deadlock (no process can make progress)

* Functional correctness bugs
* |nput-output relationships
» Interface properties
« Data structure invariants




-
Program Verification

Ideally: Prove that any given program is correct

General
Program |—— Right or Wrong

program.c — [ Checker

Specification

?

In general: Undecidable

This lecture: For some (kinds of) properties, a Program Verifier
can provide a proof (if right) or a counterexample (if wrong)




-

Program Testing (Lecture 6)

\_

Pragmatically: Convince yourself that a specific
program probably works

Specification

program.c ——

Specific
Testing
Strategy

—_—

Probably Right
or
Certainly Wrong

“Program testing can be quite effective for showing the presence
of bugs, but is hopelessly inadequate for showing their absence.”

— Edsger Dijkstra




Path Testing Example (Lecture 6)

Example pseudocode:

if (conditionl)
statementl;

else
statement2;

if (condition?2)
statement3;

else
statement4;

f

Path testing:

Should make sure all logical
paths are executed

How many passes
through code are
required?

Four paths for four combinations of
(conditionl, condition 2): TT, TF, FT, FF

« Simple programs => maybe reasonable
« Complex program => combinatorial explosion!!!

« Path test code fragments

10



-

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)
Reasoning about programs

Techniques for program verification




Reasoning about Programs

1 int factorial (int x) ({ Example:

2 inty=1; factorial program

3 int z = 0;

A while (z '= x) { Check:

5 = + 1; .

6 ;=;* z : If x >= 0, then y = fac(x)

7 ) ' (fac is the mathematical function)
8 return y;

9}

« Try out the program, say for x=3
« Atline 4, before executing the loop: x=3, y=1, z=0
« Since z = x, we will execute the while loop
« Atline 4, after 15t iteration of loop: x=3, z=1, y=1
« Atline 4, after 2"d jteration of loop: x=3, z=2, y=2
« Atline 4, after 3" iteration of loop: x=3, z=3, y=6
« Since z == X, exit loop, return 6: It works!



Reasoning about Programs

}

return y;

1 int factorial (int x) {
2 inty =1;

3 int z = 0;

4 while (z !'= x) {

5 z =z + 1;

6 y=y * z;

7

8

9

[——

« Try out the program, say for x=4

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

« Atline 4, before executing the loop: x=4, y=1, z=0
« Since z = x, we will execute the while loop

« Atline 4, after 15t iteration of loop: x=4, z=1, y=1

« Atline 4, after 2"d iteration of loop: x=4, z=2, y=2
« Atline 4, after 3" iteration of loop: x=4, z=3, y=6

« Atline 4, after 4 iteration of loop: x=4, z=4, y=24
« Since z == X, exit loop, return 24: It works!




Reasoning about Programs

int factorial (int x) ({ Example:
int y = 1; factorial program
int z = 0;
while (z !'= x) { .
B Check:

y =y * z; If x >= 0, then y = fac(x)

}

return y;

WO JdJo U1 dWNMNHR

[——

* Try out the program, say for x=1000
« Atline 4, before executing the loop: x=1000, y=1, z=0
« Since z = x, we will execute the while loop
« Atline 4, after 15t iteration of loop: x=1000, z=1, y=1
« Atline 4, after 2"d iteration of loop: x=1000, z=2, y=2
« Atline 4, after 3" iteration of loop: x=1000, z=3, y=6

« Atline 4, after 4t iteration of loop: x=1""" ——* =24 _
Want to keep going on???



Lets try some mathematics ...

1 int factorial (int x) { Example:

2 inty=1; factorial program

3 int z = 0;

4 while (z !'= x) { Check:

5 z =2z + 1; _ _

. y=y %z If x >= 0, then y = fac(x)
7}

8 return y;

9}

* Annotate the program with “assertions” [Floyd 67]
« Assertions (at program lines) are expressed as (logic) formulas
* Here, we will use standard arithmetic
« Meaning: Assertions hold before that line is executed

* For loops, we will use an assertion called a “loop invariant”
* |nvariant means that the assertion holds in each iteration of loop
« We can prove this by using induction



Loop Invariant

}

return y;

1 int factorial (int x) {
2 inty =1;
3 int z = 0;
- | 4 while (z !'= x) {
5 z =z + 1;
6 y=y * z;
7
8
9

[——

\4

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

« Loop invariant (assertion at line 4): y = fac(z)

« Try to prove by induction that the loop invariant holds
- Base case: First time at line 4, z=0, y=1, fac(0)=1, y=fac(z) holds
« Induction hypothesis: Suppose y = fac(z) at line 4
* Induction step: In next iteration of the loop (when z!=x)
« zZ' =z+1and y'=fac(z)*z+1 =fac(z’) (z/y denote updated values)
* Therefore, at line 4, y'=fac(z’), i.e., loop invariant holds again \



Proof of Correctness

}

return y;

1 int factorial (int x) {
2 inty =1;

3 int z = 0;

4 while (z !'= x) {

5 z =z + 1;

6 y=y * z;

7

8

9

}

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

« Loop invariant (assertion at line 4): y = fac(z) v

« What should we do now?

- If loop condition is true, i.e., if (z1=x), execute loop again, y=fac(z)

« If the loop condition is false, i.e., if (z=

=X), exit the loop

« Atline 8, we now know that y=fac(z) AND z==x, i.e., y=fac(x)

« Thus, at return, y = fac(x)

«  Proof of correctness of the factorial program is now done




-

Program Verification

* Rich history in computer science

« Assigning Meaning to Programs [Floyd, 1967]
« Program is annotated with assertions (formulas in logic)
* Program is proved correct by reasoning about assertions

* An Axiomatic Basis for Computer Programming [Hoare, 1969]
« Hoare Triple: {P} S {Q}
« S: statement (or fragments) in program
* P: precondition (formula in logic)
* Q: postcondition (formula in logic)

 Meaning: If S executes from a state where P is true, and if S
terminates, then Q is true in the resulting state

* This is called “partial correctness”
« does not guarantee termination of S
« For our example: {x >= 0} y = factorial(x) {y = fac(x)}




Program Verification

* Proof Systems
« Perform reasoning using logic formulas and rules of inference
« Soundness: If assertion A is proved, then A is true
« Completeness: If assertion A is true, then A can be proved

 Hoare Logic [Hoare 69]
» Inference rules for assignments, conditionals, loops, sequence
« Given a program annotated with preconditions, postconditions, and
loop invariants
« Verification Condition (VC) can be generated automatically
« IfVCis “valid”, then program is correct
« Validity of VC can be checked by a theorem-prover

* Question: Can these preconditions/postconditions/loop
Invariants be generated automatically?



-

Automatic Program Verification

~

Question: Can these preconditions/postconditions/loop
Invariants be generated automatically?

Answer: Yes! (in many cases)

Techniques for deriving the assertions automatically
« Model checking: based on exploring “states” of programs

« Abstract interpretation: based on static analysis using
“abstractions” of programs

* ... many other techniques

Still an active area of research (after more than 45 years)!




-

Model Checking

« Temporal logic
« Used for specifying correctness properties
* [Pnueli, 1977]

* Model checking

« Verifying temporal logic properties by state space exploration
« [Clarke & Emerson, 1981] and [Queille & Sifakis, 1981]




-
Model Checker

« Model checker performs automatic state space exploration

« |f all reachable states are visited and error state is not reached,
then property is proved correct

Otherwise, it provides a counterexample (trace to error state)

j nt factorial(ine ) Property holds
i while (e 1= | Proof

P & A

 rewumn | Model

(may run out of memory)

Checker

A v \
Property fails

Counterexample

Property: formula
Is error state reachable?
(Example: error state is where y = fac(x) at return)




Model Checking (simplified)

« Consider viewing a program like a DFA (not quite, ...)
« “State” in a program
* Line number
« Value of each program variable (not shown below)
« “Transition” in a program
« Statement in program (updates state)

« Example: factorial program

int factorial (int x) {
inty =1;
int z = 0;
while (z !'= x) {
z =2z + 1;
y=y * z;
}

return y;

OO JdJo Ol dWDNH

—




Model Checking (simplified)

« Example: factorial program

1 int factorial (int x) {
2 inty =1;

3 int z = 0;

4 while (z !'= x) {

5 z z + 1;
6
7
8
9

y=y * z;
}

return y;

}

« Number of program states
« 9 (lines)*(states of x)*(states of y)*(states of z): 9 * 232 * 232 * 232
« States are not represented explicitly, but symbolically as formulas
* e.g. (z<y) represents all program states where z is less than y

 Many other enhancements are used ...



-

F-Soft Model Checker

~

TR

Automatic tool for finding bugs in large C/C++ programs (NEC)

1: void pivot_sort(int A[J, int n){
2. int pivot=A[0], low=0, high=n;
3: while (low < high) {
4. do{

low++ ;
} while ( A[low] <= pivot) ;
do {

high - - ;
} while ( A[high] >= pivot );
10: swap(&A[low],&A[high]);
11: }
12:}

F-Soft ——

Array Buffer Overflow?

counterexample trace
Line 1: n=2, A[0]=10, A[1]=10
Line 2: pivot=10, low=0, high=2
Line 3: low < high ? YES
Line 5: low =1
Line 6: A[low] <=pivot? YES
Line 5: low =2
Line 6: A[low] <= pivot ?

Buffer Overflow!!!




4 )

Summary

S0 WU

Program verification
* Provide proofs of correctness for classes of properties & programs
« Testing cannot provide proofs of correctness (unless exhaustive)

Proof systems based on logic
« Users annotate the program with assertions
 Theorem-provers perform search for proofs (with user guidance)

Automatic verification technigues
« Program assertions are derived automatically
« But, scalability is an issue
« EXxplosion in sets of reachable states
* Worse for concurrent multi-threaded programs
* Need to explore all possible interleavings of different threads

COS 597B in Fall '15: Automatic Reasoning about Software

J




-

Course Summary

We have covered:

Programming in the large
« The C programming language
« Testing
 Building
* Debugging
* Program & programming style
« Data structures
« Modularity
* Performance

)




-

Course Summary

We have covered (cont.):

Under the hood

* Number systems

« Language levels tour
« Assembly language
« Machine language
« Assemblers and linkers

« Service levels tour
« EXceptions and processes
« Storage management
« Dynamic memory management
* Process management
/O management
 Signals

%




-

The Rest of the Course

Assignment 7
* Due on Dean’s Date (5/12) at 5SPM
« Cannot submit late (University regulations)
« Cannot use late pass

Office hours and exam prep sessions
« Will be announced on Piazza

Final exam
 When: Tuesday 5/19, 1:30 PM
 Where: Friend Center 101
» Closed book, closed notes, no electronic devices

)




Thank you!




