
1

Performance

Improvement

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 7

For Your Amusement

“Optimization hinders evolution.”

-- Alan Perlis

“Premature optimization is the root of all evil.”

-- Donald Knuth

“Rules of Optimization:
• Rule 1: Don't do it.

• Rule 2 (for experts only): Don't do it yet.”

-- Michael A. Jackson

2

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms (done)

• Modularity (done)

• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools <-- we are here

3

4

Goals of this Lecture

Help you learn about:
• Techniques for improving program performance

• How to make your programs run faster and/or use less memory

• The GPROF execution profiler

Why?
• In a large program, typically a small fragment of the code consumes

most of the CPU time and/or memory

• A power programmer knows how to identify such code fragments

• A power programmer knows techniques for improving the

performance of such code fragments

5

Performance Improvement Pros

Techniques described in this lecture can yield answers to

questions such as:
• How slow is my program?

• Where is my program slow?

• Why is my program slow?

• How can I make my program run faster?

• How can I make my program use less memory?

6

Performance Improvement Cons

Techniques described in this lecture can yield code that:
• Is less clear/maintainable

• Might confuse debuggers

• Might contain bugs

• Requires regression testing

So…

7

When to Improve Performance

“The first principle of optimization is

don’t.
Is the program good enough already?
Knowing how a program will be used

and the environment it runs in,
is there any benefit to making it faster?”

-- Kernighan & Pike

Agenda

Execution (time) efficiency
• Do timing studies

• Identify hot spots

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Memory (space) efficiency

8

9

Timing a Program

Run a tool to time program execution
• E.g., Unix time command

Output:
• Real: Wall-clock time between program invocation and termination

• User: CPU time spent executing the program

• System: CPU time spent within the OS on the program’s behalf

But, which parts of the code are the most time consuming?

$ time sort < bigfile.txt > output.txt

real 0m12.977s

user 0m12.860s

sys 0m0.010s

10

Timing Parts of a Program

Call a function to compute wall-clock time consumed
• E.g., Unix gettimeofday() function (time since Jan 1, 1970)

• Not defined by C90 standard

#include <sys/time.h>

struct timeval startTime;

struct timeval endTime;

double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);

<execute some code here>

gettimeofday(&endTime, NULL);

wallClockSecondsConsumed =

endTime.tv_sec - startTime.tv_sec +

1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

11

Timing Parts of a Program (cont.)

Call a function to compute CPU time consumed
• E.g. clock() function

• Defined by C90 standard

#include <time.h>

clock_t startClock;

clock_t endClock;

double cpuSecondsConsumed;

startClock = clock();

<execute some code here>

endClock = clock();

cpuSecondsConsumed =

((double)(endClock - startClock)) / CLOCKS_PER_SEC;

Agenda

Execution (time) efficiency
• Do timing studies

• Identify hot spots

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Memory (space) efficiency

12

13

Identifying Hot Spots

Gather statistics about your program’s execution
• How much time did execution of a particular function take?

• How many times was a particular function called?

• How many times was a particular line of code executed?

• Which lines of code used the most time?

• Etc.

How? Use an execution profiler
• Example: gprof (GNU Performance Profiler)

14

GPROF Example Program

Example program for GPROF analysis
• Sort an array of 10 million random integers

• Artificial: consumes much CPU time, generates no output

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

enum {MAX_SIZE = 10000000};

int a[MAX_SIZE]; /* Too big to fit in stack! */

void fillArray(int a[], int size)

{ int i;

for (i = 0; i < size; i++)

a[i] = rand();

}

void swap(int a[], int i, int j)

{ int temp = a[i];

a[i] = a[j];

a[j] = temp;

}

…

15

GPROF Example Program (cont.)

Example program for GPROF analysis (cont.)

…

int partition(int a[], int left, int right)

{ int first = left-1;

int last = right;

for (;;)

{ while (a[++first] < a[right])

;

while (a[right] < a[--last])

if (last == left)

break;

if (first >= last)

break;

swap(a, first, last);

}

swap(a, first, right);

return first;

}

…

16

GPROF Example Program (cont.)

Example program for GPROF analysis (cont.)

…

void quicksort(int a[], int left, int right)

{ if (right > left)

{ int mid = partition(a, left, right);

quicksort(a, left, mid - 1);

quicksort(a, mid + 1, right);

}

}

int main(void)

{ fillArray(a, MAX_SIZE);

quicksort(a, 0, MAX_SIZE - 1);

return 0;

}

17

Using GPROF

Step 1: Instrument the program

gcc217 –pg mysort.c –o mysort

• Adds profiling code to mysort, that is…

• “Instruments” mysort

Step 2: Run the program

mysort

• Creates file gmon.out containing statistics

Step 3: Create a report

gprof mysort > myreport

• Uses mysort and gmon.out to create textual report

Step 4: Examine the report

cat myreport

18

The GPROF Report

Flat profile

• Each line describes one function
• name: name of the function

• %time: percentage of time spent executing this function

• cumulative seconds: [skipping, as this isn’t all that useful]

• self seconds: time spent executing this function

• calls: number of times function was called (excluding recursive)

• self s/call: average time per execution (excluding descendents)

• total s/call: average time per execution (including descendents)

% cumulative self self total

time seconds seconds calls s/call s/call name

84.54 2.27 2.27 6665307 0.00 0.00 partition

9.33 2.53 0.25 54328749 0.00 0.00 swap

2.99 2.61 0.08 1 0.08 2.61 quicksort

2.61 2.68 0.07 1 0.07 0.07 fillArray

19

The GPROF Report (cont.)

Call graph profile

index % time self children called name

<spontaneous>

[1] 100.0 0.00 2.68 main [1]

0.08 2.53 1/1 quicksort [2]

0.07 0.00 1/1 fillArray [5]

13330614 quicksort [2]

0.08 2.53 1/1 main [1]

[2] 97.4 0.08 2.53 1+13330614 quicksort [2]

2.27 0.25 6665307/6665307 partition [3]

13330614 quicksort [2]

2.27 0.25 6665307/6665307 quicksort [2]

[3] 94.4 2.27 0.25 6665307 partition [3]

0.25 0.00 54328749/54328749 swap [4]

0.25 0.00 54328749/54328749 partition [3]

[4] 9.4 0.25 0.00 54328749 swap [4]

0.07 0.00 1/1 main [1]

[5] 2.6 0.07 0.00 1 fillArray [5]

20

The GPROF Report (cont.)

Call graph profile (cont.)
• Each section describes one function

• Which functions called it, and how much time was consumed?

• Which functions it calls, how many times, and for how long?

• Usually overkill; we won’t look at this output in any detail

21

GPROF Report Analysis

Observations
• swap() is called very many times; each call consumes little time;

swap() consumes only 9% of the time overall

• partition() is called many times; each call consumes little time;

but partition() consumes 85% of the time overall

Conclusions
• To improve performance, try to make partition() faster

• Don’t even think about trying to make fillArray() or

quicksort() faster

22

Aside: GPROF Design

Incidentally…

How does GPROF work?
• Good question!

• Essentially, by randomly sampling the code as it runs

• … and seeing what line is running, & what function it’s in

Agenda

Execution (time) efficiency
• Do timing studies

• Identify hot spots

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Memory (space) efficiency

23

24

Using Better Algs and DSs

Use a better algorithm or data structure

Example:
• For mysort, would mergesort work better than quicksort?

See COS 226!

Agenda

Execution (time) efficiency
• Do timing studies

• Identify hot spots

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Memory (space) efficiency

25

26

Enabling Speed Optimization

Enable compiler speed optimization

gcc217 –Ox mysort.c –o mysort

• Compiler spends more time compiling your code so…

• Your code spends less time executing

• x can be:

• 1: optimize

• 2: optimize more

• 3: optimize yet more

• See “man gcc” for details

Beware: Speed optimization can affect debugging
• E.g. Optimization eliminates variable => GDB cannot print value of

variable

Agenda

Execution (time) efficiency
• Do timing studies

• Identify hot spots

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Memory (space) efficiency

27

28

Avoiding Repeated Computation

Avoid repeated computation

int g(int x)

{ return f(x) + f(x) + f(x) + f(x);

}

int g(int x)

{ return 4 * f(x);

}

Before:

After:

Could a good

compiler do

that for you?

29

Aside: Side Effects as Blockers

Q: Could a good compiler do that for you?

A: Probably not

Suppose f() has side effects?

int g(int x)

{ return f(x) + f(x) + f(x) + f(x);

}
int g(int x)

{ return 4 * f(x);

}

int counter = 0;

...

int f(int x)

{ return counter++;

}

And f() might be defined in

another file known only at link

time!

Avoiding Repeated Computation

Avoid repeated computation

30

for (i = 0; i < strlen(s); i++)

{ /* Do something with s[i] */

}

length = strlen(s);

for (i = 0; i < length; i++)

{ /* Do something with s[i] */

}

Could a good

compiler do

that for you?

Before:

After:

Avoiding Repeated Computation

Avoid repeated computation

31

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[n*i + j] = b[j];

int ni;

…

for (i = 0; i < n; i++)

{ ni = n * i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

Could a good

compiler do

that for you?

Before:

After:

Tune the Code

Avoid repeated computation

32

void twiddle(int *p1, int *p2)

{ *p1 += *p2;

*p1 += *p2;

}

void twiddle(int *p1, int *p2)

{ *p1 += *p2 * 2;

}

Before:

After:

Could a good

compiler do

that for you?

Aside: Aliases as Blockers

Q: Could a good compiler do that for you?

A: Not necessarily

What if p1 and p2 are aliases?
• What if p1 and p2 point to the same integer?

• First version: result is 4 times *p1

• Second version: result is 3 times *p1

Some compilers support restrict keyword
33

void twiddle(int *p1, int *p2)

{ *p1 += *p2;

*p1 += *p2;

} void twiddle(int *p1, int *p2)

{ *p1 += *p2 * 2;

}

34

Inlining Function Calls

Inline function calls

void g(void)

{ /* Some code */

}

void f(void)

{ …

g();

…

}

void f(void)

{ …

/* Some code */

…

}

Before:

After:

Beware: Can introduce redundant/cloned code
Some compilers support inline keyword

Could a good

compiler do

that for you?

35

Unrolling Loops

Unroll loops

for (i = 0; i < 6; i++)

a[i] = b[i] + c[i];

for (i = 0; i < 6; i += 2)

{ a[i+0] = b[i+0] + c[i+0];

a[i+1] = b[i+1] + c[i+1];

}

a[i+0] = b[i+0] + c[i+0];

a[i+1] = b[i+1] + c[i+1];

a[i+2] = b[i+2] + c[i+2];

a[i+3] = b[i+3] + c[i+3];

a[i+4] = b[i+4] + c[i+4];

a[i+5] = b[i+5] + c[i+5];

Could a good

compiler do

that for you?

Original:

Some compilers provide option, e.g. –funroll-loops

Maybe

faster:

Maybe

even

faster:

36

Using a Lower-Level Language

Rewrite code in a lower-level language
• As described in second half of course…

• Compose key functions in assembly language instead of C

• Use registers instead of memory

• Use instructions (e.g. adc) that compiler doesn’t know

Beware: Modern optimizing compilers generate fast code
• Hand-written assembly language code could be slower!

Agenda

Execution (time) efficiency
• Do timing studies

• Identify hot spots

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Memory (space) efficiency

37

Improving Memory Efficiency

These days memory is cheap, so…

Memory (space) efficiency typically is less important

than execution (time) efficiency

Techniques to improve memory (space) efficiency…

38

39

Improving Memory Efficiency

Use a smaller data type
• E.g. short instead of int

Compute instead of storing
• E.g. To determine linked list length, traverse nodes instead of

storing node count

Enable compiler size optimization
• gcc217 -Os mysort.c –o mysort

40

Summary

Steps to improve execution (time) efficiency:
• Do timing studies

• Identify hot spots (using GPROF)

• Use a better algorithm or data structure

• Enable compiler speed optimization

• Tune the code

Techniques to improve memory (space) efficiency:
• Use a smaller data type

• Compute instead of storing

• Enable compiler size optimization

And, most importantly…

41

Summary (cont.)

Clarity supersedes performance

Don’t improve

performance unless

you must!!!

