
1

Debugging (Part 1)

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 5

For Your Amusement

“When debugging, novices insert corrective code; experts

remove defective code.”

-- Richard Pattis

“If debugging is the act of removing errors from code, what's

programming?”

-- Tom Gilb

“Debugging is twice as hard as writing the code in the first

place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to debug

it.”

-- Brian Kernighan

2

For Your Amusement

3

The first computer bug

(found in the Harvard Mark II computer)

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms

• Modularity

• Building techniques & tools (done)

Test
• Testing techniques (done)

Debug
• Debugging techniques & tools <-- we are here

Maintain
• Performance improvement techniques & tools

4

5

Goals of this Lecture

Help you learn about:
• Strategies and tools for debugging your code

Why?
• Debugging large programs can be difficult

• A power programmer knows a wide variety of debugging strategies

• A power programmer knows about tools that facilitate debugging

• Debuggers

• Version control systems

6

Testing vs. Debugging

Testing
• What should I do to try to break my program?

Debugging
• What should I do to try to fix my program?

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

(Next week: specific to dynamic memory management)

7

8

Understand Error Messages

Debugging at build-time is easier than debugging at run-

time, if and only if you…

Understand the error messages!

#include <stdioo.h>

/* Print "hello, world" to stdout and

return 0.

int main(void)

{ printf("hello, world\n");

return 0;

}

What are the

errors? (No

fair looking at

the next slide!)

9

Understand Error Messages

#include <stdioo.h>

/* Print "hello, world" to stdout and

return 0.

int main(void)

{ printf("hello, world\n");

return 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error(s)?

$ gcc217 hello.c -o hello

hello.c:1:20: error: stdioo.h: No such file or

directory

hello.c:2:1: error: unterminated comment

hello.c:7: warning: ISO C forbids an empty

translation unit

10

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ printf("hello, world\n")

return 0;

}

What are the

errors? (No

fair looking at

the next slide!)

11

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ printf("hello, world\n")

return 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error?

$ gcc217 hello.c -o hello

hello.c: In function 'main':

hello.c:6: error: expected ';' before 'return'

12

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ prinf("hello, world\n");

return 0;

}

What are the

errors? (No

fair looking at

the next slide!)

13

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ prinf("hello, world\n")

return 0;

}

$ gcc217 hello.c -o hello

hello.c: In function 'main':

hello.c:5: warning: implicit declaration of function

'prinf'

/tmp/ccLSPMTR.o: In function `main':

hello.c:(.text+0x1a): undefined reference to `prinf'

collect2: ld returned 1 exit status

Which tool

(preprocessor,

compiler, or

linker) reports

the error?

14

Understand Error Messages

#include <stdio.h>

#include <stdlib.h>

enum StateType

{ STATE_REGULAR,

STATE_INWORD

}

int main(void)

{ printf("just hanging around\n");

return EXIT_SUCCESS;

}

What are the

errors? (No

fair looking at

the next slide!)

15

Understand Error Messages

#include <stdio.h>

#include <stdlib.h>

enum StateType

{ STATE_REGULAR,

STATE_INWORD

}

int main(void)

{ printf("just hanging around\n");

return EXIT_SUCCESS;

}

$ gcc217 hello.c -o hello

hello.c:7: error: two or more data types in declaration specifiers

hello.c:7: warning: return type of 'main' is not 'int'

What does

this error

message even

mean?

16

Understand Error Messages

Caveats concerning error messages
• Line # in error message may be approximate

• Error message may seem nonsensical

• Compiler may not report the real error

Tips for eliminating error messages
• Clarity facilitates debugging

• Make sure code is indented properly

• Look for missing semicolons

• At ends of structure type definitions

• At ends of function declarations

• Work incrementally

• Start at first error message

• Fix, rebuild, repeat

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

17

18

Think Before Writing

Inappropriate changes could make matters worse, so…

Think before changing your code
• Explain the code to:

• Yourself

• Someone else

• A Teddy bear?

• Do experiments

• But make sure they’re disciplined

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

19

20

Look for Common Bugs

Some of our favorites:

int i;

…

scanf("%d", i);

char c;

…

c = getchar();

switch (i)

{ case 0:

…

break;

case 1:

…

case 2:

…

}

if (i = 5)

…

if (5 < i < 10)

…

if (i & j)

…

while (c = getchar() != EOF)

…

What are

the

errors?

21

Look for Common Bugs

Some of our favorites:

for (i = 0; i < 10; i++)

{ for (j = 0; j < 10; i++)

{ ...

}

}

What are

the

errors?
for (i = 0; i < 10; i++)

{ for (j = 10; j >= 0; j++)

{ ...

}

}

22

Look for Common Bugs

Some of our favorites:

{ int i;

…

i = 5;

if (something)

{ int i;

…

i = 6;

…

}

…

printf("%d\n", i);

…

}

What value is

written if this

statement is

present? Absent?

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

23

24

Divide and Conquer

Divide and conquer: To debug a program…

• Incrementally find smallest input file that illustrates the bug

• Approach 1: Remove input

• Start with file

• Incrementally remove lines

until bug disappears

• Examine most-recently-removed lines

• Approach 2: Add input

• Start with small subset of file

• Incrementally add lines

until bug appears

• Examine most-recently-added lines

25

Divide and Conquer

Divide and conquer: To debug a module…

• Incrementally find smallest client code subset that illustrates the

bug

• Approach 1: Remove code

• Start with test client

• Incrementally remove lines of code until bug disappears

• Examine most-recently-removed lines

• Approach 2: Add code

• Start with minimal client

• Incrementally add lines of test client until bug appears

• Examine most-recently-added lines

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

26

27

Add More Internal Tests

(5) Add more internal tests

• Internal tests help find bugs (see “Testing” lecture)

• Internal test also can help eliminate bugs

• Validating parameters & checking invariants

can eliminate some functions from the bug hunt

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

28

29

Display Output

Write values of important variables at critical spots

• Poor:

• Maybe better:

• Better:

printf("%d", keyvariable);

stdout is buffered;

program may crash

before output appears

printf("%d", keyvariable);

fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush

stdout buffer

explicitly

Printing '\n' flushes

the stdout buffer, but

not if stdout is

redirected to a file

30

Display Output

• Maybe even better:

• Maybe better still:

fprintf(stderr, "%d", keyvariable);

FILE *fp = fopen("logfile", "w");

…

fprintf(fp, "%d", keyvariable);

fflush(fp);

Write debugging
output to stderr;

debugging output

can be separated

from normal output

via redirection

Write to a log file

Bonus: stderr is

unbuffered

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

31

32

Use a Debugger

Use a debugger

• Alternative to displaying output

33

The GDB Debugger

GNU Debugger
• Part of the GNU development environment

• Integrated with Emacs editor

• Allows user to:

• Run program

• Set breakpoints

• Step through code one line at a time

• Examine values of variables during run

• Etc.

For details see precept tutorial, precept reference sheet,

Appendix 1

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

34

35

Focus on Recent Changes

Focus on recent changes

• Corollary: Debug now, not later

Easier:

(1) Compose a little

(2) Test a little

(3) Debug a little

(4) Compose a little

(5) Test a little

(6) Debug a little

…

Difficult:

(1) Compose entire program

(2) Test entire program

(3) Debug entire program

36

Focus on Recent Changes

Focus on recent change (cont.)

• Corollary: Maintain old versions

Difficult:

(1) Change code

(2) Note new bug

(3) Try to remember what

changed since last

version

Easier:

(1) Backup current version

(2) Change code

(3) Note new bug

(4) Compare code with

last version to

determine what changed

37

Maintaining Old Versions

To maintain old versions…

Approach 1: Manually copy project directory

…

$ mkdir myproject

$ cd myproject

Create project files here.

$ cd ..

$ cp –r myproject myprojectDateTime

$ cd myproject

Continue creating project files here.

…

38

Maintaining Old Versions

Approach 2: Use the Revision Control System (RCS)
• A simple version control system

• Provided with many Linux distributions

• Available on nobel

• Allows programmer to:

• Check-in source code files from working copy to repository

• RCS saves old versions

• Check-out source code files from repository to working copy

• Can retrieve old versions

• Appropriate for one-developer projects

Not required for COS 217, but good to know!

See Appendix 2 for details

39

Maintaining Old Versions

Approach 3: Use CVS, Subversion, Git, …
• High-powered version control systems

• Appropriate for multi-developer projects

• Allow repositories to be shared

Beyond our scope, but good to know!

Summary

General debugging strategies and tools:
(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

• Use GDB!!!

(8) Focus on recent changes

• Consider using RCS, etc.

Debugging Part 2 (next week): specific to dynamic memory

management

40

41

Appendix 1: Using GDB

An example program

File testintmath.c:

#include <stdio.h>

int gcd(int i, int j)

{ int temp;

while (j != 0)

{ temp = i % j;

i = j;

j = temp;

}

return i;

}

int lcm(int i, int j)

{ return (i / gcd(i, j)) * j;

}

…

The program is correct

But let’s pretend it has a

runtime error in gcd()…

…

int main(void)

{ int iGcd;

int iLcm;

iGcd = gcd(8, 12);

iLcm = lcm(8, 12);

printf("%d %d\n", iGcd, iLcm);

return 0;

}

Euclid’s algorithm;

Don’t be concerned

with details

42

Appendix 1: Using GDB

General GDB strategy:

• Execute the program to the point of interest

• Use breakpoints and stepping to do that

• Examine the values of variables at that point

43

Appendix 1: Using GDB

Typical steps for using GDB:

(a) Build with –g
gcc217 –g testintmath.c –o testintmath

• Adds extra information to executable file that GDB uses

(b) Run Emacs, with no arguments
emacs

(c) Run GDB on executable file from within Emacs

<Esc key> x gdb <Enter key> testintmath <Enter key>

(d) Set breakpoints, as desired

break main

• GDB sets a breakpoint at the first executable line of main()

break gcd

• GDB sets a breakpoint at the first executable line of gcd()

44

Appendix 1: Using GDB

Typical steps for using GDB (cont.):
(e) Run the program

run

• GDB stops at the breakpoint in main()

• Emacs opens window showing source code

• Emacs highlights line that is to be executed next

continue

• GDB stops at the breakpoint in gcd()

• Emacs highlights line that is to be executed next

(f) Step through the program, as desired
step (repeatedly)

• GDB executes the next line (repeatedly)

• Note: When next line is a call of one of your functions:
• step command steps into the function

• next command steps over the function, that is, executes the next line
without stepping into the function

45

Appendix 1: Using GDB

Typical steps for using GDB (cont.):

(g) Examine variables, as desired
print i

print j

print temp

• GDB prints the value of each variable

(h) Examine the function call stack, if desired
where

• GBB prints the function call stack

• Useful for diagnosing crash in large program

(i) Exit gdb
quit

(j) Exit Emacs
<Ctrl-x key> <Ctrl-c key>

46

Appendix 1: Using GDB

GDB can do much more:
• Handle command-line arguments

run arg1 arg2

• Handle redirection of stdin, stdout, stderr
run < somefile > someotherfile

• Print values of expressions

• Break conditionally

• Etc.

47

Appendix 2: Using RCS

Typical steps for using RCS:
(a) Create project directory, as usual

mkdir helloproj

cd helloproj

(b) Create RCS directory in project directory
mkdir RCS

• RCS will store its repository in that directory

(c) Create source code files in project directory
emacs hello.c …

(d) Check in
ci hello.c

• Adds file to RCS repository

• Deletes local copy (don’t panic!)

• Can provide description of file (1st time)

• Can provide log message, typically describing changes

48

Appendix 2: Using RCS

Typical steps for using RCS (cont.):
(e) Check out most recent version for reading

co hello.c

• Copies file from repository to project directory

• File in project directory has read-only permissions

(f) Check out most recent version for reading/writing
co –l hello.c

• Copies file from repository to project directory

• File in project directory has read/write permissions

(g) List versions in repository
rlog hello.c

• Shows versions of file, by number (1.1, 1.2, etc.), with

descriptions

(h) Check out a specified version
co –l –rversionnumber hello.c

49

Appendix 2: Using RCS

RCS can do much more:
• Merge versions of files

• Maintain distinct development branches

• Place descriptions in code as comments

• Assign symbolic names to versions

• Etc.

Recommendation: Use RCS
• ci and co can become automatic!

