
Using	a	Command	Line	Interface	
A	CoS126	Introduction	

	
	
Long	ago,	before	operating	systems	with	graphical	user	interfaces	(GUIs),	everyone	
used	command	line	interfaces	(CLIs).	For	example,	instead	of	starting	a	program	by	
clicking	the	icon	for	your	program	in	the	Launchpad	or	whatever	new‐fangled	
mawhoozawhatzit,	you	instead	typed	the	name	of	your	program.	And	instead	of	
clicking	on	menus	in	your	program	to	adjust	settings,	open	files,	etc,	you	could	
specify	these	things	as	command	line	arguments.	
	
In	fact,	expert	computer	users	still	use	command	prompts	quite	heavily.	It’s	an	
incredibly	useful	abstraction	that	you’re	now	going	to	begin	making	use	of.	
	
A	specific	instance	of	the	command	line	interface	is	called	a	“terminal	window”	by	
Mac	OS	X	(which	utilizes	a	version	of	Unix	under	the	hood),	and	the	term	“command	
prompt”	is	used	by	Windows.	The	terms	are	virtually	interchangeable.	We	will	use	
the	term	“command	line	interface”	throughout	this	document.	
	
Learning	to	fully	utilize	a	command	line	interface	is	something	that	could	(and	does)	
fill	an	entire	book.	In	this	tutorial,	we’ll	address	the	key	ideas,	give	a	few	examples,	
and	leave	you	to	learn	the	rest	on	your	own	as	you	choose.	
	
The	Basics	–	Opening	the	Command	Line	Interface	
	
In	Mac	OS	X,	the	terminal	application	can	be	found	in	Applications‐>Utilities‐
>Terminal.	
	
In	Windows,	it	can	be	found	in	Programs‐>Accessories‐>Command	Prompt.		
	
Note,	there	are	many	other	ways	of	accessing	the	command	line	interfaces.	All	of	
them	are	fine	to	use.	
	
Prompt	text	
	
When	you	open	your	CLI,	the	first	thing	you’ll	see	is	a	prompt,	i.e.	a	string	of	text	that	
lets	you	know	the	computer	is	waiting	for	you,	the	user,	to	take	action.		
	
In	Windows,	the	default	prompt	is	the	entire	path	to	your	present	working	directory	
(we’ll	discuss	what	that	means	later)	followed	by	a	>	sign.	For	example:	
	
In	Mac	OS	X,	the	default	command	prompt	is	your	computer	name,	followed	by	the	
name	of	your	present	working	directory,	followed	by	your	user	name,	followed	by	a	
$.	For	example:	

	
Here,	my	computer	is	named	Jorberts‐Macbook‐Air:,	I	am	in	the	“~”	directory	[more	
on	this	later],	my	user	name	is	jug,	and	there’s	that	dollar	sign.	
	
Both	of	these	prompts	can	be	changed.	I	leave	it	to	you	to	google	this.		
	
	
Present	Working	Directory	
	
Your	CLI	can	be	thought	of	as	being	“in”	a	particular	directory.	We	call	this	directory	
the	present	working	directory.		
	
In	Windows,	you	always	know	your	present	working	directory,	because	the	default	
prompt	tells	you	the	entire	path	to	the	present	working	directory.	In	the	example	
below,	we	see	that	the	command	prompt	starts	off	in	a	directory	called	“Hvagvarfis”,	
and	the	whole	path	is	“E:\users64\Hvagvarfis”.		
	
In	Mac	OS	X,	you	must	run	a	program	called	pwd	in	order	to	see	your	present	
working	directory.	To	do	this,	type	“pwd”.	For	example,	on	my	computer,	if	I	use	
pwd	right	after	opening	a	terminal	window,	I	get:	

	
This	means	that	the	name	of	the	present	working	directory	is	jug,	and	the	full	path	
of	the	present	working	directory	is	/Users/jug.	Note	that	in	Unix	based	operating	
systems,	the	“~”	directory	is	shorthand	for	your	home	directory.		
	
One	important	distinction	is	that	in	Windows,	all	paths	start	with	a	drive	letter	and	
then	a	colon	symbol.	In	Unix	based	operating	systems,	everything	simply	starts	with	
/.	
	
Listing	the	Files	in	a	Directory	
	
To	list	files	in	the	present	working	directory	in	Windows,	use	the	dir	command:	
	
In	Mac	OS	X,	use	the	ls	(that’s	lowercase	LS)	command:	
	

	
Here	we	see	that	there	are	11	things	inside	of	my	/users/Jug	directory.	In	Mac	OS	X,	
subdirectories	are	listed	in	exactly	the	same	format	as	files.		You	can	tell	Mac	OS	X	to	
mark	folders	with	a	/	by	typing	“ls	–F”.		

	
	
Creating,	Removing,	and	Navigating	between	Directories	
	
In	both	Mac	OS	X	and	Windows,	you	can	create	a	new	directory	by	using	the	mkdir	
command.		
	
In	this	section,	we	recommend	that	you	follow	along.			

	
First,	type	“mkdir	temporary”	and	press	enter.	Now	type	“ls”	or	“dir”	to	get	the	
directory	listing.	You’ll	see	that	a	new	folder	named	“temporary”	exists.			
	

	
In	fact,	you	can	even	go	to	your	Finder	or	Explorer	Window,	and	you’ll	see	that	the	
GUI	can	see	the	folder	you’ve	made.	For	example,	on	a	Mac,	we	have:	
	

	
	
	

To	change	directories	in	Mac	OS	X	or	QWindows,	one	uses	the	command	cd.	Try	it	
out	by	typing	“cd	temporary”.		
	
In	Mac	OS	X,	type	pwd	and	ls,	and	you	will	see	the	following:	
	

	
There	are	no	files,	unsurprisingly.	We	also	note	that	the	“~”	has	changed	to	
“temporary”,	which	means	that	our	current	directory	has	changed	from	our	home	
directory	to	a	directory	with	the	name	“temporary”.		
	
In	Windows,	the	command	prompt	automatically	shows	you	what	folder	you’re	in.		
Type	“dir	“and	you	will	also	see	that	there	are	no	files	in	the	temporary	directory:	
	
	
How	does	one	go	back,	you	may	ask?	Simply	type	“cd	..”	to	go	back	one	directory.	For	
example:	

	
	
Running	a	Program	
	
To	run	a	program,	simply	type	the	name	of	the	program.	Programs	in	Windows	
typically	(but	don’t	always)	have	the	extension	.exe	(for	executable).	In	Mac	OS	X,	
they	typically	have	no	extension	at	all.	
	
For	this	to	work,	the	program	must	be	either	in	the	present	working	directory,	or	on	
the	system	path	(see	appendix).		
	
	
Running	Programs	Using	the	Full	Path	
	
If	you	want	to	run	something	that’s	not	on	the	system	path,	and	not	in	the	present	
working	directory,	you	can	instead	type	the	full	path	of	the	file.	
	
For	example,	if	we	type	/usr/bin/ls	at	the	command	prompt,	we	get	an	error,	
because	the	computer	tries	to	find	ls	in	the	wrong	location:	
	

	
/bin/ls	works	just	fine,	by	contrast	
	

	
	
Command	Line	Arguments	
	
You	can	provide	additional	information	to	a	program	about	what	you’d	like	to	do	
with	command	line	arguments.	For	example,	if	you	give	the	ls	or	dir	programs	a	
directory	as	a	command‐line	argument	it	will	instead	list	the	contents	of	the	
directory	name	that	you	give.	
	

For	example,	try	ls	/bin	,	and	you	should	get	something	like:

	
Or	in	Windows,	try	“dir	C:\”	and	you	should	get	something	like:		
	
	
Finding	Where	a	Program	is	Located	
	
In	Mac	OS	X,	you	can	type	which	“[name	of	program]”,	and	it	will	tell	you	where	that	
program	is	located.	On	Windows,	use	where	instead.	For	example:	
	

	
	
Redirecting	StdOut	
	
Ordinarily,	programs	print	their	text	output	to	the	screen.	However,	you	can	redirect	
the	output	of	most	programs	to	a	file.	To	do	this,	one	simply	types:	
	
Program	name	[command	line	arguments]	>	[filename]	
	

The	>	indicates	to	the	operating	system	that	output	should	be	sent	to	a	file	instead	of	
the	screen.	
	
For	example,	try	“ls	>	curdir.txt”	or	“dir	>	curdir.txt”	depending	on	your	operating	
system.	
	
This	will	output	the	results	of	ls	to	the	file	curdir.txt.	
	
Redirecting	StdIn	
	
Ordinarily,	when	a	program	requests	input	from	StdIn,	this	information	is	gathered	
from	the	keyboard.	However,	one	can	redirect	StdIn	to	refer	to	a	file.	To	do	this,	you	
type:	
	
Program	name	[command	line	argments]	<	[filename]	
	
Now,	all	calls	to	StdIn	will	be	referred	to	the	file	given	by	filename.		
	
And	there’s	more…	much	more…	
	
We	have	scratched	the	surface	of	what	it’s	possible	to	do	using	a	command	line	
interface.	There	are	many	tutorials	on	the	web	that	you	might	find	interesting	to	
explore.	
	
Appendix:	System	Path	
	
The	system	path	is	a	special	list	of	directories	that	the	computer	always	checks	
when	you	ask	it	to	run	a	program.		
	
To	see	the	system	path	in	Windows,	type:	
echo	%PATH%	
	
In	Mac	OS	X,	type	echo	$PATH	
	

	
Here	we	see	that	the	path	on	my	computer	includes	the	directories	
/Users/jug/scuts,	/usr/bin,	/bin,	/usr/sbin,	etc.	
	
As	an	example	of	using	the	path,	“ls”	is	actually	a	program,	and	it	is	located	at	
/bin/ls.		If	we	did	not	have	/bin/ls	in	our	path,	then	typing	“ls”	would	result	in	an	
error.		

