UNIX Sockets

COS 461 Precept 1

Socket and Process Communication

The interface that the OS provides to its networking subsystem

Delivering the Data: Division of Labor

Network

- Deliver data packet to the destination host
- Based on the destination IP address

Operating system

- Deliver data to the destination socket
- Based on the destination port number (e.g., 80)

Application

- Read data from and write data to the socket
- Interpret the data (e.g., render a Web page)

Socket: End Point of Communication

- Sending message from one process to another
 - Message must traverse the underlying network
- Process sends and receives through a "socket"
 - In essence, the doorway leading in/out of the house
- Socket as an Application Programming Interface
 - Supports the creation of network applications

Two Types of Application Processes Communication

- Datagram Socket (UDP)
 - Collection of messages
 - Best effort
 - Connectionless
- Stream Socket (TCP)
 - Stream of bytes
 - Reliable
 - Connection-oriented

User Datagram Protocol (UDP): Datagram Socket

UDP

- Single socket to receive messages
- No guarantee of delivery
- Not necessarily in-order delivery
- Datagram independent packets
- Must address each packet

Postal Mail

- Single mailbox to receive letters
- Unreliable
- Not necessarily in-order delivery
- Letters sent independently
- Must address each mail

Example UDP applications
Multimedia, voice over IP (Skype)

Transmission Control Protocol (TCP): Stream Socket

TCP

- Reliable guarantee delivery
- Byte stream in-order delivery
- Connection-oriented single socket per connection
- Setup connection followed by data transfer

Telephone Call

- Guaranteed delivery
- In-order delivery
- Connection-oriented

 Setup connection followed by conversation

Example TCP applications Web, Email, Telnet

Socket Identification

Receiving host

- Destination address that uniquely identifies host
- IP address: 32-bit quantity

Receiving socket

- Host may be running many different processes
- Destination port that uniquely identifies socket
- Port number: 16-bits

Client-Server Communication

- Client "sometimes on"
 - Initiates a request to the server when interested
 - E.g., Web browser on your laptop or cell phone
 - Doesn't communicate directly with other clients
 - Needs to know server's address

- Server is "always on"
 - Handles services requests from many client hosts
 - E.g., Web server for the www.cnn.com Web site
 - Doesn't initiate contact with the clients
 - Needs fixed, known address

Knowing What Port Number To Use

- Popular applications have well-known ports
 - E.g., port 80 for Web and port 25 for e-mail
 - See http://www.iana.org/assignments/port-numbers
- Well-known vs. ephemeral ports
 - Server has a well-known port (e.g., port 80)
 - Between 0 and 1023 (requires root to use)
 - Client picks an unused ephemeral (i.e., temporary) port
 - Between 1024 and 65535
- "5 tuple" uniquely identifies traffic between hosts
 - Two IP addresses and two port numbers
 - + underlying transport protocol (e.g., TCP or UDP)

Using Ports to Identify Services

UNIX Socket API

- In UNIX, everything is like a file
 - All input is like reading a file
 - All output is like writing a file
 - File is represented by an integer file descriptor
- API implemented as system calls
 - E.g., connect, send, recv, close, ...

Client-Server Communication Stream Sockets (TCP): Connection-oriented

Client-Server Communication Datagram Sockets (UDP): Connectionless

Client: Learning Server Address/Port

- Server typically known by name and service
 - E.g., "www.cnn.com" and "http"
- Need to translate into IP address and port #
 - E.g., "64.236.16.20" and "80"
- Get address info with given host name and service

- *node: host name (e.g., "www.cnn.com") or IP address
- *service: port number or service listed in /etc/services (e.g. ftp)
- hints: points to a struct addrinfo with known information

Client: Learning Server Address/Port (cont.)

Data structure to host address information

```
struct addrinfo {
   int
                    ai flags;
   int
                    ai family; //e.g. AF INET for IPv4
                    ai socketype; //e.g. SOCK STREAM for TCP
   int
                    ai_protocol; //e.g. IPPROTO TCP
   int
   size t
                    ai addrlen;
                    *ai canonname;
   char
                    *ai addr; // point to sockaddr struct
   struct sockaddr
                     *ai next;
   struct addrinfo
```

Example

```
hints.ai_family = AF_UNSPEC;  // don't care IPv4 or IPv6
hints.ai_socktype = SOCK_STREAM; // TCP stream sockets
int status = getaddrinfo("www.cnn.com", "80", &hints, &result);
// result now points to a linked list of 1 or more addrinfos
// etc.
```

Client: Creating a Socket

- Creating a socket
 - int socket(int domain, int type, int protocol)
 - Returns a file descriptor (or handle) for the socket
- Domain: protocol family
 - PF_INET for IPv4
 - PF_INET6 for IPv6
- Type: semantics of the communication
 - SOCK_STREAM: reliable byte stream (TCP)
 - SOCK_DGRAM: message-oriented service (UDP)
- Protocol: specific protocol
 - UNSPEC: unspecified
 - (PF_INET and SOCK_STREAM already implies TCP)
- Example

Client: Connecting Socket to the Server

- Client contacts the server to establish connection
 - Associate the socket with the server address/port
 - Acquire a local port number (assigned by the OS)
 - Request connection to server, who hopefully accepts
 - connect is blocking
- Establishing the connection

- Args: socket descriptor, server address, and address size
- Returns 0 on success, and -1 if an error occurs

Client: Sending Data

Sending data

- Arguments: socket descriptor, pointer to buffer of data to send, and length of the buffer
- Returns the number of bytes written, and -1 on error
- send is <u>blocking</u>: return only after data is sent
- Write short messages into a buffer and send once

Client: Receiving Data

Receiving data

- Arguments: socket descriptor, pointer to buffer to place the data, size of the buffer
- Returns the number of characters read (where 0 implies "end of file"), and -1 on error
- Why do you need len? What happens if buf's size < len?</p>
- recv is <u>blocking</u>: return only after data is received

Byte Order

- Network byte order
 - Big Endian
- Host byte order
 - Big Endian (IBM mainframes, Sun SPARC) or Little Endian (x86)
- Functions to deal with this
 - htons() & htonl() (host to network short and long)
 - ntohs() & ntohl() (network to host short and long)
- When to worry?
 - putting data onto the wire
 - pulling data off the wire

Server: Server Preparing its Socket

- Server creates a socket and binds address/port
 - Server creates a socket, just like the client does
 - Server associates the socket with the port number
- Create a socket

Bind socket to the local address and port number

Server: Allowing Clients to Wait

- Many client requests may arrive
 - Server cannot handle them all at the same time
 - Server could reject the requests, or let them wait
- Define how many connections can be pending
 - int listen(int sockfd, int backlog)
 - Arguments: socket descriptor and acceptable backlog
 - Returns a 0 on success, and -1 on error
 - Listen is <u>non-blocking</u>: returns immediately
- What if too many clients arrive?
 - Some requests don't get through
 - The Internet makes no promises...
 - And the client can always try again

Server: Accepting Client Connection

- Now all the server can do is wait...
 - Waits for connection request to arrive
 - Blocking until the request arrives
 - And then accepting the new request

- Accept a new connection from a client

 - Arguments: sockfd, structure that will provide client address and port, and length of the structure
 - Returns descriptor of socket for this new connection

Client and Server: Cleaning House

- Once the connection is open
 - Both sides and read and write
 - Two unidirectional streams of data
 - In practice, client writes first, and server reads
 - ... then server writes, and client reads, and so on
- Closing down the connection
 - Either side can close the connection
 - ... using the int close(int sockfd)
- What about the data still "in flight"
 - Data in flight still reaches the other end
 - So, server can close() before client finishes reading

Server: One Request at a Time?

- Serializing requests is inefficient
 - Server can process just one request at a time
 - All other clients must wait until previous one is done
 - What makes this inefficient?
- May need to time share the server machine
 - Alternate between servicing different requests
 - Do a little work on one request, then switch when you are waiting for some other resource (e.g., reading file from disk)
 - "Nonblocking I/O"
 - Or, use a different process/thread for each request
 - Allow OS to share the CPU(s) across processes
 - Or, some hybrid of these two approaches

Handle Multiple Clients using fork()

Steps to handle multiple clients

- Go to a loop and accept connections using accept()
- After a connection is established, call fork() to create a new child process to handle it
- Go back to listen for another socket in the parent process
- close() when you are done.

Want to know more?

Checkout out Beej's guide to network programming