UNIX Sockets

COS 461 Precept 1

Socket and Process Communication

Al 4!

<<
application layer application layer
User Process < Internet >~ User Process
Socket Socket |
transpgg lmgﬁWBQ.RIUDP) transpoet Iﬂ%BQﬁlUd)P)
netwouiclayer (IP) | < Internet > netw%wr (IP)
Iink_Ia;Ler_(-e;g,_eihﬂmzt) < Internet > link layer (e.g. ethernet)

The interface that the OS provides to its networking subsystem

Delivering the Data: Division of Labor

* Network
— Deliver data packet to the destination host

— Based on the destination IP address
* Operating system @
— Deliver data to the destination socket
— Based on the destination port number (e.g., 80)
* Application
— Read data from and write data to the socket

— Interpret the data (e.g., render a Web page)

Socket: End Point of Communication

* Sending message from one process to another
— Message must traverse the underlying network

* Process sends and receives through a "socket"
— In essence, the doorway leading in/out of the house

* Socket as an Application Programming Interface
— Supports the creation of network applications

User process User process

socket socket

Operating Operating
System System

Two Types of Application Processes
Communication

e Datagram Socket (UDP)
— Collection of messages
— Best effort

— Connectionless

e Stream Socket (TCP)

— Stream of bytes
— Reliable

— Connection-oriented

User Datagram Protocol (UDP):
Datagram Socket

UDP Postal Mail
Single socket to receive messages * Single mailbox to receive letters
No guarantee of delivery e Unreliable
Not necessarily in-order delivery * Not necessarily in-order delivery
Datagram — independent packets e Letters sent independently
Must address each packet * Must address each mail

Example UDP applications
Multimedia, voice over IP (Skype)

Transmission Control Protocol (TCP):
Stream Socket

TCP Telephone Call
Reliable — guarantee delivery * Guaranteed delivery
Byte stream — in-order delivery * In-order delivery
Connection-oriented — single * Connection-oriented

socket per connection

Setup connection followed by ¢ Setup connection followed by
data transfer conversation

Example TCP applications
Web, Email, Telnet

Socket Identification

* Receiving host

— Destination address that
uniquely identifies host

— IP address: 32-bit quantity

* Receiving socket

— Host may be running
many different processes

— Destination port that
uniquely identifies socket

— Port number: 16-bits

A

Process | Process

B

port X .\

portY

\

TCP/UDP | ---

Ethernet Adapter

___ Port
Number

- - Protocol

— - Host
Address

Client-Server Communication

e Client "sometimes on" e Server is "always on"

— Initiates a request to the — Handles services requests
server when interested from many client hosts

— E.g., Web browser on your — E.g., Web server for the
laptop or cell phone www.cnn.com Web site

— Doesn't communicate — Doesn't initiate contact with
directly with other clients the clients

— Needs to know server's — Needs fixed, known address
address

Knowing What Port Number To Use

e Popular applications have well-known ports
— E.g., port 80 for Web and port 25 for e-mail
— See http://www.iana.org/assigenments/port-numbers

 Well-known vs. ephemeral ports

— Server has a well-known port (e.g., port 80)
* Between 0 and 1023 (requires root to use)

— Client picks an unused ephemeral (i.e., temporary) port
* Between 1024 and 65535

* "5 tuple” uniquely identifies traffic between hosts

— Two IP addresses and two port numbers
— + underlying transport protocol (e.g., TCP or UDP)

10

Using Ports to Identify Services

. Service request for
et host 128.2.194.242:80

i (i.e., the Web server)

Server host 128.2.194.242

Web server

Service request for
s, 128.2.194.242:7

: (i.e., the echo server)

Web server
(port 80)

Echo server
(port 7)

UNIX Socket API

* |n UNIX, everything is like a file
— All input is like reading a file
— All output is like writing a file
— File is represented by an integer file descriptor

* APl implemented as system calls
— E.g., connect, send, recv, close, ...

12

Client-Server Communication

Stream Sockets (TCP): Connection-oriented

Server

socket() Create a socket

v

bind() Bind the socket Client

(what port am | on?)

* Create a socket

Listen for client *
(Wait for incoming connections)

ection Connect to server
eStab\\S
accept() Accept connection /

¢
l Jata (reque>) Send the request
recv() Receive Request

send() Send response —. data (reply)

listen()

—» Receive response

socket()

connect()

send()

recv()

Client-Server Communication
Datagram Sockets (UDP): Connectionless

Server
Client
socket() Create a socket

¢ Create a socket socket()

bind() Bind the socket *

l Bind the socket bind()

est) *

data (reau — Send the request sendto()

recvfrom() Receive Request

l

data (repl
sendto() Send response Ply)

— Receive response recvfrom()

14

Client: Learning Server Address/Port

e Server typically known by name and service
— E.g., "www.cnn.com" and "http"

* Need to translate into IP address and port #
— E.g., "64.236.16.20" and "80"

* Get address info with given host name and service
— int getaddrinfo(char *node,
char *service,
struct addrinfo *hints,
struct addrinfo **result)

— *node: host name (e.g., "www.cnn.com") or IP address

— *service: port number or service listed in /etc/services (e.g. ftp)
— hints: points to a struct addrinfo with known information

15

Client: Learning Server Address/Port (cont.)

e Data structure to host address information
struct addrinfo {

int ai flags;

int ai family; //e.g. AF INET for IPv4
int ai socketype; //e.g. SOCK STREAM for TCP
int ai protocol; //e.g. IPPROTO TCP

size t al addrlen;

char *al canonname;

struct sockaddr *ai addr; // point to sockaddr struct
struct addrinfo *ai next;

}
 Example
hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPvé6

hints.ai_ socktype = SOCK_STREAM; // TCP stream sockets

int status = getaddrinfo("www.cnn.com", "80", &hints, &result);
// result now points to a linked list of 1 or more addrinfos

// etc.

16

Client: Creating a Socket

Creating a socket
— int socket(int domain, int type, int protocol)
— Returns a file descriptor (or handle) for the socket

Domain: protocol family
— PF_INET for IPv4
— PF_INET®6 for IPv6

Type: semantics of the communication
— SOCK_STREAM: reliable byte stream (TCP)
— SOCK_DGRAM: message-oriented service (UDP)

Protocol: specific protocol
— UNSPEC: unspecified
— (PF_INET and SOCK_STREAM already implies TCP)

Example

sockfd = socket(result->ai family,
result->ai socktype,
result->ai protocol);

17

Client: Connecting Socket to the Server

* Client contacts the server to establish connection
— Associate the socket with the server address/port
— Acquire a local port number (assigned by the OS)
— Request connection to server, who hopefully accepts
— connect is blocking

e Establishing the connection
— int connect(int sockfd,
struct sockaddr *server_ address,

socketlen t addrlen)

— Args: socket descriptor, server address, and address size
— Returns 0 on success, and -1 if an error occurs

— E.g. connect(sockfd,

result->ai addr,
result->ai addrlen);

18

Client: Sending Data

* Sending data
— int send(int sockfd, void *msg,
size t len, int flags)

— Arguments: socket descriptor, pointer to buffer of data to
send, and length of the buffer

— Returns the number of bytes written, and -1 on error
— send is blocking: return only after data is sent

— Write short messages into a buffer and send once

Client: Receiving Data

* Receiving data

— int recv(int sockfd, void *buf,
size t len, int flags)

— Arguments: socket descriptor, pointer to buffer to place
the data, size of the buffer

— Returns the number of characters read (where O implies
"end of file"), and -1 on error

— Why do you need len? What happens if buf's size < len?
— recv is blocking: return only after data is received

Byte Order

Network byte order
— Big Endian

Host byte order
— Big Endian (IBM mainframes, Sun SPARC) or Little Endian (x86)

Functions to deal with this
— htons() & htonl() (host to network short and long)
— ntohs() & ntohl() (network to host short and long)

When to worry?

— putting data onto the wire
— pulling data off the wire

21

Server: Server Preparing its Socket

* Server creates a socket and binds address/port
— Server creates a socket, just like the client does
— Server associates the socket with the port number

* Create a socket
— int socket(int domain,
int type, int protocol)

* Bind socket to the local address and port number
— int bind(int sockfd,
struct sockaddr *my addr,
socklen t addrlen)

22

Server: Allowing Clients to Wait

* Many client requests may arrive
— Server cannot handle them all at the same time
— Server could reject the requests, or let them wait

* Define how many connections can be pending
— int listen(int sockfd, int backlog)
— Arguments: socket descriptor and acceptable backlog
— Returns a 0 on success, and -1 on error
— Listen is non-blocking: returns immediately

 What if too many clients arrive?
— Some requests don't get through
— The Internet makes no promises...
— And the client can always try again

23

Server: Accepting Client Connection

* Now all the server can do is wait...
— Waits for connection request to arrive »\
D

— Blocking until the request arrives W

— And then accepting the new request

* Accept a new connection from a client
— int accept(int sockfd,

struct sockaddr *addr,
socketlen t *addrlen)

— Arguments: sockfd, structure that will provide client
address and port, and length of the structure

— Returns descriptor of socket for this new connection

24

Client and Server: Cleaning House

* Once the connection is open
— Both sides and read and write
— Two unidirectional streams of data
— In practice, client writes first, and server reads
— ... then server writes, and client reads, and so on

* Closing down the connection
— Either side can close the connection
— ...using the int close(int sockfd)

 What about the data still "in flight"

— Data in flight still reaches the other end
— So, server can close () before client finishes reading

25

Server: One Request at a Time?

e Serializing requests is inefficient
— Server can process just one request at a time
— All other clients must wait until previous one is done
— What makes this inefficient?

 May need to time share the server machine

— Alternate between servicing different requests

* Do a little work on one request, then switch when you are
waiting for some other resource (e.g., reading file from disk)

* "Nonblocking I/0"
— Or, use a different process/thread for each request

* Allow OS to share the CPU(s) across processes

— Or, some hybrid of these two approaches

Handle Multiple Clients using fork()

* Steps to handle multiple clients
— Go to a loop and accept connections using accept()

— After a connection is established, call fork() to create a
new child process to handle it

— Go back to listen for another socket in the parent process
— close() when you are done.

e Want to know more?

— Checkout out Beej's guide to network programming

27

