

Network Security Protocols

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr14/cos461/

Network Security

- · Application layer
 - E-mail: PGP, using a web-of-trust
 - Web: HTTP-S, using a certificate hierarchy
- Transport layer
 - Transport Layer Security/ Secure Socket Layer
- Network layer
 - IP Sec
- · Network infrastructure
 - DNS-Sec and BGP-Sec

Basic Security Properties

- · Confidentiality:
- Authenticity:
- Integrity:
- Availability:
- · Non-repudiation:
- Access control:

Basic Security Properties

- Confidentiality: Concealment of information or resources
- Authenticity: Identification and assurance of origin of info
- Integrity: Trustworthiness of data or resources in terms of preventing improper and unauthorized changes
- Availability: Ability to use desired information or resource
- Non-repudiation: Offer of evidence that a party indeed is sender or a receiver of certain information
- Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

Encryption and MAC/Signatures

Confidentiality (Encryption)

Auth/Integrity (MAC / Signature)

Sender:

- Compute C = Enc_K(M)
- Send C Receiver:
- Recover M = Dec_k(C)
- Sender:
- Compute s = Sig_K(Hash (M))
- Send <M, s>
- Receiver: Compute s' = Ver_k(Hash (M))
- Check s' == s

These are simplified forms of the actual algorithms

Email Security: Pretty Good Privacy (PGP)

E-Mail Security

- Security goals
 - Confidentiality: only intended recipient sees data
 - Integrity: data cannot be modified en route
 - Authenticity: sender and recipient are who they say
- · Security non-goals
 - Timely or successful message delivery
 - Avoiding duplicate (replayed) message
 - (Since e-mail doesn't provide this anyway!)

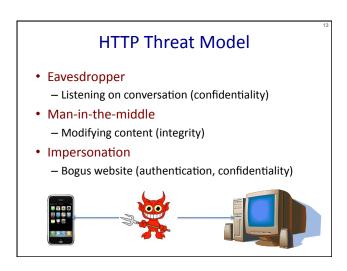
Sender and Receiver Keys

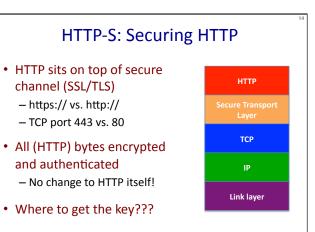
- If the sender knows the receiver's public key
 - Confidentiality
 - Receiver authentication
- If the receiver knows the sender's public key
 - Sender authentication
 - Sender non-repudiation

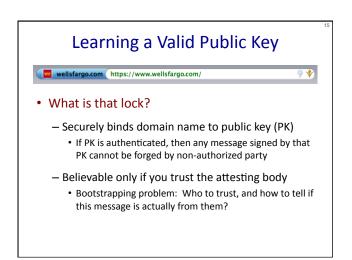
Sending an E-Mail Securely

- · Sender digitally signs the message
 - Using the sender's private key
- · Sender encrypts the data
 - Using a one-time session key
 - Sending the session key, encrypted with the receiver's public key
- · Sender converts to an ASCII format
 - Converting the message to base64 encoding
 - (Email messages must be sent in ASCII)

Public Key Certificate

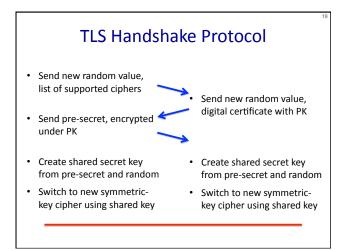

- Binding between identity and a public key
 - "Identity" is, for example, an e-mail address
 - "Binding" ensured using a digital signature
- · Contents of a certificate
 - Identity of the entity being certified
 - Public key of the entity being certified
 - Identity of the signer
 - Digital signature
 - Digital signature algorithm id




Web of Trust for PGP

- · Decentralized solution
 - Protection against government intrusion
 - No central certificate authorities
- Customized solution
 - Individual decides whom to trust, and how much
 - Multiple certificates with different confidence levels
- Key-signing parties!
 - Collect and provide public keys in person
 - Sign other's keys, and get your key signed by others

HTTP Security


Hierarchical Public Key Infrastructure

- Public key certificate
 - Binding between identity and a public key
 - "Identity" is, for example, a domain name
 - Digital signature to ensure integrity
- Certificate authority
 - Issues public key certificates and verifies identities
 - Trusted parties (e.g., VeriSign, GoDaddy, Comodo)
 - Preconfigured certificates in Web browsers

Transport Layer Security (TLS)

Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape

TLS Record Protocol

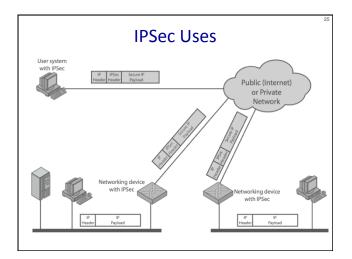
- Messages from application layer are:
 - Fragmented or coalesced into blocks
 - Optionally compressed
 - Integrity-protected using an HMAC
 - Encrypted using symmetric-key cipher
 - Passed to the transport layer (usually TCP)
- Sequence #s on record-protocol messages
 - Prevents replays and reorderings of messages

Comments on HTTPS

- · HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content
- Symmetric-key crypto after public-key ops
 - Handshake protocol using public key crypto
 - Symmetric-key crypto much faster (100-1000x)
- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once
 - Adversary can't successfully drop or replay packets

IP Security

IP Security


- There are range of app-specific security mechanisms

 eg. TLS/HTTPS, S/MIME, PGP, Kerberos, ...
 - _____
- But security concerns that cut across protocol layers
- Implement by the network for all applications?

Enter IPSec!

IPSec

- General IP Security framework
- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- · Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

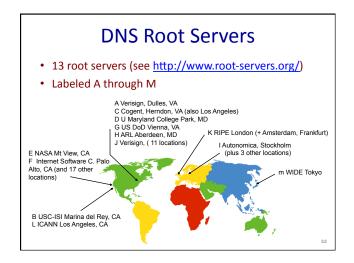
Benefits of IPSec

- If in a firewall/router:
 - -Strong security to all traffic crossing perimeter
 - Resistant to bypass
- Below transport layer
 - Transparent to applications
 - -Can be transparent to end users
- Can provide security for individual users

IP Security Architecture

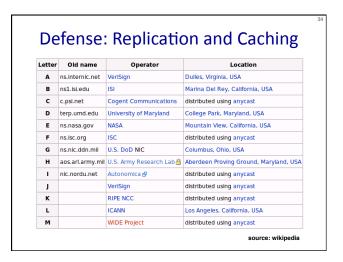
- Specification quite complex
 - Mandatory in IPv6, optional in IPv4
- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - MAC over most header fields and packet body
 - Anti-replay protection
 - Encapsulating Security Payload (ESP)
 - These properties, plus confidentiality

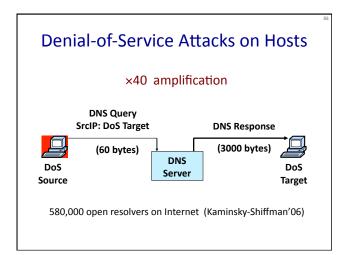
Encapsulating Security Payload (ESP)

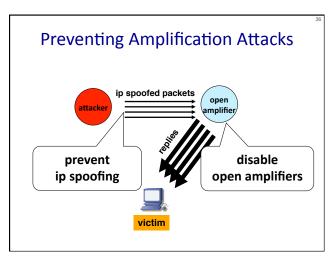

- Transport mode: Data encrypted, but not header
 - After all, network headers needed for routing!
 - Can still do traffic analysis, but is efficient
 - Good for host-to-host traffic
- Tunnel mode: Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security

Replay Protection is Hard

- Goal: Eavesdropper can't capture encrypted packet and duplicate later
 - Easy with TLS/HTTP on TCP: Reliable byte stream
 - But IP Sec at packet layer; transport may not be reliable
- IP Sec solution: Sliding window on sequence #'s
 - All IPSec packets have a 64-bit monotonic sequence number
 - Receiver keeps track of which segno's seen before
 - [lastest windowsize + 1 , latest]; windowsize typically 64 packets
 - Accept packet if
 - seqno > latest (and update latest)
 - Within window but has not been seen before
 - If reliable, could just remember last, and accept iff last + 1


DNS Security


Hierarchical Naming in DNS unnamed root unnamed root unnamed root ac ... uk zw arpa generic domains country domains ac an 12 my.east.bar.edu usr.cam.ac.uk 12.34.56.0/24 31



DoS attacks on DNS Availability

- Feb. 6, 2007
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
 - None crashed, but two performed badly:
 - g-root (DoD), I-root (ICANN)
 - Most other root servers use anycast

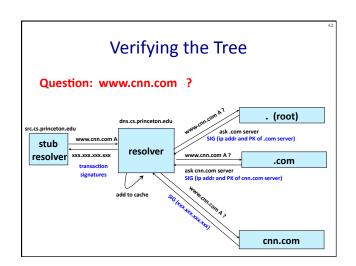
DNS Integrity and the TLD Operators

- If domain name doesn't exist, DNS should return NXDOMAIN (non-existant domain) msg
- Verisign instead creates wildcard records for all <u>.com</u> and <u>.net</u> names not yet registered
 - September 15 October 4, 2003
- Redirection for these domain names to Verisign web portal: "to help you search"
 - And serve you ads...and get "sponsored" search
 - Verisign and online advertising companies make \$\$

DNS Integrity: Cache Poisoning

- Was answer from an authoritative server?
 - Or from somebody else?
- · DNS cache poisoning
 - Client asks for www.evil.com
 - Nameserver authoritative for www.evil.com returns additional section for (www.cnn.com, 1.2.3.4, A)
 - Thanks! I won't bother check what I asked for

DNS Integrity: DNS Hijacking


- To prevent cache poisoning, client remembers:
 - The domain name in the request
 - A 16-bit request ID (used to demux UDP response)
- DNS hijacking
 - 16 bits: 65K possible IDs
 - What rate to enumerate all in 1 sec? 64B/packet
 - -64*65536*8 / 1024 / 1024 = 32 Mbps
- Prevention: also randomize DNS source port
 - Kaminsky attack: this source port... wasn't random http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

Let's strongly believe the answer! Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity

PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
 - Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of name server's public keys is established by a signature over the keys by the parent's private key
 - In ideal case, only roots' public keys need to be distributed out-of-band

Conclusions

- Security at many layers
 - Application, transport, and network layers
 - Customized to the properties and requirements
- · Exchanging keys
 - Public key certificates
 - Certificate authorities vs. Web of trust
- Next time
 - Interdomain routing security
- Learn more: take COS 432 in the fall!