A 1 g O r 1 th m S ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS

» introduction

» graph API

» depth-first search

» breadth-first search

» connected components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu } Chd//enges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

« Thousands of practical applications.

« Hundreds of graph algorithms known.

« Interesting and broadly useful abstraction.

» Challenging branch of computer science and discrete math.

4.1 UNDIRECTED GRAPHS

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Border graph of 48 contiguous United States

Protein-protein interaction network

Map of science clickstreams

Reference: Jeong et al, Nature Review | Genetics

10 million Facebook friends

facebook

"Visualizing Friendships" by Paul Butler

Material science
Engineering

Manufacturing
o

Production
research
.

Econoics. oo
Thermodynaitics \\s

Bhy
.

Physical
chemistry, %~

Organi
chemistry.

Child
Psychology Religigh
o fland personaiity
psychology
. ..
®" /Anthropology;

*~ Psychology-
o

Science

11 e7/Mnimel
o %22 fohaviow
s

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

The evolution of FCC lobbying coalitions

physic
.

Electrochemistry

o .
® -*Pharmaceutical
3 research

Chemical
[
5

Willamson & As:

® «cor

Home Telephone

Commbnications,

ndiana URC
L] &7
MclsghUSK

[
Youslel Aménca
v
USKE

PaeWest

FBlinetgorks
.

\WON Coafibory Rl

[| Cow
O .‘_(2

Nalex Granie! Bipheus
L]

ynet®
% Brosdvien Geine
Grangé/Cammupicationigy

.

Talk Agjerica

7

Charter Communications

o\ telecom
DeiaCan(

O e

SouthernLiNG Wiceless
.

Carolina West Wirel
»
Celhdar South
. Telnet Worldwide
v TC3T
v

Alliance
.

NE Colorado Cellular
.

Frontier Wind:
[2

FairPoint
.

Montana PC!
.

. - Cosoligated Cor
Telscape Communications B
.

Fitch Affordable Telecom
.

Ouaotum Feb
L

Molalla Communicatons
.

Nehalem Telecommunications
o

Menroe Telep!

Canby Telephane

Pioneer Ti
.

PriorityOne Raw Bandv
° .

Usited Systents Access’
.

frminigations: |\ AstroTel
.

Telcentns

N
Eommuications)
. =

Az Communica
4 Ionary
o

iccess Point

Helix Telephone
e
n Telephone

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange

denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007 10

Graph applications

communication

circuit
mechanical

financial

transportation
internet

game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor

joint

stock, currency

intersection

class C network

board position
person
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
street
connection
legal move
friendship
synapse
protein-protein interaction

bond

http://en.wikipedia.or

Graph terminology

The Internet as mapped by the Opte Project

iki/Internet

Path. Sequence of vertices connected by edges.

Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
do
cycle of eose
length’5 \\ l
path of
« length 4
vertex of
degree 3 ™\
connected
components

Some graph-processing problems

s-t path Is there a path between s and t ?
shortest s-t path What is the shortest path between s and t ?
cycle Is there a cycle in the graph ? 4'] UNDIRECTED GRAPHS
Euler cycle Is there a cycle that uses each edge exactly once ?
Hamilton cycle Is there a cycle that uses each vertex exactly once ? | 2 gari Gph AP /
connectivity Is there a way to connect all of the vertices ? :
Algorithms
biconnectivity Is there a vertex whose removal disconnects the graph ?
planarity Can the graph be drawn in the plane with no crossing edges ? ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu
graph isomorphism Do two adjacency lists represent the same graph ?

Challenge. Which graph problems are easy? difficult? intractable?

Graph representation Graph representation

Graph drawing. Provides intuition about the structure of the graph. Vertex representation.
e This lecture: use integers between 0 and V1.
» Applications: convert between names and integers with symbol table.

symbol table

two drawings of the same graph

2 arallel
seZ]} loop Pe s

Anomalies.
Caveat. Intuition can be misleading.

Graph API Graph API: sample client

public class Graph Graph input format.

Graph(int V) create an empty graph with V vertices tinyG. txt % java Test tinyG.txt
Vi3 S 0-6
Graph(In in) create a graph from input stream 13 < 0-2
05 (o) 0-1
void addEdge(int v, int w) add an edge v-w g i o e e 0-5
.. 9 12 1-0
Iterable<Integer> adj(int v) vertices adjacent to v 6 4 2-0
_ o d e
int VO number of vertices 02 ’ e \
n1 O AD12) 3-4
int EQ number of edges 9 10 :
3 g 12-11
9 11 12-9
53
In in = new In(args[0]); read graph from In in = new In(args[0]); read graph from
Graph G = new Graph(in); input stream Graph G = new Graph(in); input stream
for (1'nt.v =0; v < (.].V(); V++) A — for ('int.v =0; v< (.J-V(); V++) ST R e
for (int w : G.adj(v)) T edge (twice) for (int w : G.adj(v)) T edge (twice)
StdOut.printin(v + "-" + w); StdOut.println(v + "-" + w);
18
Typical graph-processing code Set-of-edges graph representation

public class Graph Maintain a list of the edges (linked list or array).

Graph(int V) create an empty graph with V vertices
Graph(In 1in) create a graph from input stream
0
void addEdge(int v, int w) add an edge v-w 0 1
N . . . 0 2
Iterable<Integer> adj(int v) vertices adjacent to v 0 e e 0 s
int VO number of vertices 0 6
3 4
int EQ number of edges }o 3 5
5 4 5
4 6
// degree of vertex v in graph G 7 8
public static int degree(Graph G, int v) e @ 9 10
int degree = 0; e e 0 @ 9 12
for (int w : G.adj(v)) 11 12
degree++;

return degree;
} Q. How long to iterate over vertices adjacent to v ?

20

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array;

for each edge v—w in graph: adj[vl[w] = adj[w][v] = true.
two entries
0 for each edge
\ 2 3 4 5 6 7 10 11 12

O @ © : o o 0 o

1 0 0 0 0

2 0 0 0 0

e o 3 N 0 0

5 0

O O o0 oo ok Rr OO K+ o
O O O O O O O O O o o o ¥
O O O O O O o o o oo

O O O ©O ©O O © r K+ OoJjO

O O O © © O K K

O O O © O ©o /O

o O O © o

o O O © B o

Q. How long to iterate over vertices adjacent to v ?

Graph representations

O O O O O O O O O O O Ofx

P PR OO OOOOOO O Ofwv

O O OB OO O O o o o oo

H O O P OO O O o o o o o

In practice. Use adjacency-lists representation.
e Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

dense (E=1000)

sparse (E=200)

Two graphs (V = 50)

O R OKF O O O O O O o O o

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

]

Bag objects
;
~[5 4]

adj[]

~

[6]~{3]
[4]~{0]
[4]

N

O 0 N O Ui A W N O

representations
of t
~7]

he same edge

= e
N R
=
o

alel
[<]] |[&]

Q. How long to iterate over vertices adjacent to v ?

/
[&]

22 23

Graph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent to v.
» Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

iterate over vertices

q edge between
representation

space add edge

v and w? adjacent to v?
list of edges E 1 E E
adjacency matrix V2 1%* 1 \%
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

24 25

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V; : .

. . adjacency lists
private Bag<Integer>[] adj; “—T — (using Bag data type)
pubTlic Graph(int V)

{
this.V = V; create empty graph
adj = (Bag<Integer>[]) new Bag[Vl; <“—F— ihVvertices
for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>(Q);

}

public void addEdge(int v, int w)

{ add edge v-w
adj[v].add(w); <«—+— (parallel edges and
adj [w].add(V); self-loops allowed)

}

pub1 ic Iterabl e<Integer> adj Gint v) <«—F— iterator for vertices adjacent to v

{ return adj[v]; }

}
26

Maze exploration

Maze graph.
« Vertex = intersection.
« Edge = passage.

s | 0 s

] E%[jlf[;%%]

ey
o

intersection passage

Goal. Explore every intersection in the maze.

28

4.1 UNDIRECTED GRAPHS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Trémaux maze exploration

» depth-first search

Algorithm.
« Unroll a ball of string behind you.

» Mark each visited intersection and each visited passage.

» Retrace steps when no unvisited options.

= A
& A

M

-—

A

T——o

29

Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage.
« Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;
Ariadne instructed Theseus to use a ball of string to find his way back out.

The Labyrinth (with Minotaur) Claude Shannon (with Theseus mouse)

30

Maze exploration: medium

32

Maze exploration: easy

]]
T | E_L
I 1r
| | - I
- |]
J—_’icj -
L [\— JW
|
R [
.FT | | B

Maze exploration: challenge for the bored

gk

ik
E]

R ik u'w%
-
2

il

AT G

31

33

Depth-first search

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration. <«— function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.

« Find all vertices connected to a given source vertex.

« Find a path between two vertices.

Design challenge. How to implement?

Depth-first search demo

To visit a vertex v:
* Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

vertices reachable from 0

v marked[] edgeTo[]
0 T -
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
7 F -
8 F -
9 F -
10 F =
11 F —
12 F -

36

Depth-first search demo

To visit a vertex v:

O

* Recursively visit all unmarked vertices adjacent to v.

0 (O—®

* Mark vertex v as visited.

Vil

VVONOUWVWRFRPROUVUIO WO N~O

w R oo

graph G

Design pattern for graph processing

tinyG. txt
V\13
13 -

Design pattern. Decouple graph data type from graph processing.

« Create a Graph object.
» Pass the Graph to a graph-processing routine.
» Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s)
boolean hasPathTo(int v)

Iterable<Integer> pathTo(int v)

Paths paths = new Paths(G, s);
for (int v = 0; v < G.VQ; v++)
if (paths.hasPathTo(v))

StdOut.println(v); —

find paths in G from source s
is there a path from s to v?

path from s to v, null if no such path

print all vertices
connected to s

35

37

Depth-first search: data structures

To visit a vertex v:
e Mark vertex v as visited.
« Recursively visit all unmarked vertices adjacent to v.

Data structures.
« Boolean array marked[] to mark visited vertices.
« Integer array edgeTo[] to keep track of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time
« Function-call stack for recursion.

Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees (plus time to initialize the marked[] array).

Pf. [CO rrectness] source set of marked

vertices

« If w marked, then w connected to s (why?)
« If w connected to s, then w marked.
(if w unmarked, then consider last edge

on a path from s to w that goes from a
no such edge
set of <« can exist

unmarked

vertices "

marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

40

Depth-first search: Java implementation

public class DepthFirstPaths

{ marked[v] = true
private boolean[] marked; <«———+—— if vconnected to s
private int[] edgeTo; <« edgeTo[v] = previous

private int s; vertex on path from s to v

pubTlic DepthFirstPaths(Graph G, int s)

{
- <«——+— initialize data structures
} dfs(G, s); <«——+—— find vertices connected to s
rivate void dfs(Graph G, int v
? (P ’) <«——F— recursive DFS does the work

marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
{
dfs(G, w);
edgeTo[w] = v;

Depth-first search: properties

Proposition. After DFS, can check if vertex vis connected to s in constant
time and can find v—s path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

public boolean hasPathTo(int v)
{ return marked[v]; }

edgeTo[]

public Iterable<Integer> pathTo(int v) 0

{
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>(Q);
for (int x = v; x !=s; x = edgeTo[x])
path.push(x);
path.push(s);
return path;

v W N R
wwNOoN

39

41

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph (implicitly). e o 0o 0 o
« Vertex: pixel. ol
« Edge: between two adjacent gray pixels. . °
» Blob: all pixels connected to given pixel. i
e o6 o o

4.1 UNDIRECTED GRAPHS

Algorithms

» breadth-first search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Depth-first search application: preparing for a date

PREPARING FOR A DATE:
MIGHT T PREPARE. RR? i) A) SNAKEBITE
1) MEDKAL EMERGENCY 8) LIGHTNING STRIKE

O,
o 0

A

2) DANCNG M O FULRM AR

[~ A

o re]

HAM. WHICH SNAKES ARE

%

WHAT SITUATIONS EMERGENCIES (ANHOPPEN? DANGEROUS? LET'S SEE.... THE RESEARCH (OMPARING
DANGER
DA)D) (RN SNAKE. 7

©) GARTER SNAKE. 7
R it I sigoerid

SNAKE VENOMS 1§ SCATTERED
PD INCONSISTENT. TLL MAKE

xkcd

http://xkcd.com/761/

42

Breadth-first search demo

IMHERETOPKK BY Py, THE INLAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOT DRESSED? VENOM OF ANY SNAKE'!

@)

T REALY NEED To STop
USING DEPTH-FIRST SEARCHES.

Repeat until queue is empty:
« Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to v and mark them.

@)

graph G

T

©

tinyCG. txt

c:Z:
Nl‘!j

OWWORNNOO®
NV RENWRAUV

43

45

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to vand mark them.

(o) >(:

S ¢ o

done

Breadth-first search: Java implementation

v edgeTo[] distTo[]

0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

46

pubTlic class BreadthFirstPaths
{

private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {

Queue<Integer> q = new Queue<Integer>(Q);

g.enqueue(s);
marked[s] = true;
distTo[s] 0;

while (!q.isEmpty()) {
int v = gq.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {

g.enqueue(w) ;
marked[w] = true;
edgeTo[w] V;
distTo[w] distTo[Vv]

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

48

Breadth-first search

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

N

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v

i

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

4

47

Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from s.

AN

queue always consists of > 0 vertices of distance k from s,
followed by >0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths
from s to all other vertices in time proportional to £+ V.

o ()
o*o

graph G dist =0 dist=1 dist = 2

49

Breadth-first search application: routing

Fewest number of hops in a communication network.

SATELLITE CIRCUIT
P

TP
PLURIBUS 1MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE iMP NAMCS, NOT (NECESSARILY) HOST NAMES

oo

ARPANET, July 1977

50
Kevin Bacon graph
 Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.
« Compute shortest path from s = Kevin Bacon.
The Stepford
Gielgud Portrait Lloyd
Kidman
Orient Express Donald
perfrer
/
VVI(ZW'K’ wild
vertex
witd The Da
inslet -Titam'c ."VES
Eternal Sunshine| e
of the Spotless
Mind
52

Breadth-first search application: Kevin Bacon numbers

ann The Oracle of Bacon
<[> e UGl +]@) € 1o s /wwm oracieomtacen org/co-Biasmoviel nksXgame - CaArstname - Kevie s baco O B Q
The Curtis | woe of Musc COS 126 FOR ACM Awands Wang

SIA McClachy | Memepage Stocks COSIZE FOT TPM RSS (1742)% Kschaten

1 jo0 5001390 XIS

THE ORACLE

OF BACON

Buzz Mauro

Sweet Dreams (2005)

Tatiana Ramirez

Interior de un silencio, El (2005) |

: Uma Thurman
acted in
Andres Suarez

Be Cool (2005) ;
with
Carlita's Secret (2004) | Scott Adsit
- who acted in
Paula Lemes (1) The Informant! (2009))
with
FrostNixon (2008) Matt Damon
Kewn Bacon 10 suzz Mauro find bk) (More optoms >>
=

http://oracleofbacon.org SixDegrees iPhone App

Breadth-first search application: Erdés numbers

hand-drawing of part of the Erdés graph by Ron Graham

51

53

4.1 UNDIRECTED GRAPHS

Algorithms

» connected components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Connected components

The relation "is connected to" is an equivalence relation:
» Reflexive: vis connected to v.
e Symmetric: if v is connected to w, then w is connected to v.
« Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

Y id[]

0 0

(0) % 8
3 0

ORCROIEFNIT 9
6 0

O ONEEN AN P
A (2 o
10 2

3 connected components 11 2

12 2

Remark. Given connected components, can answer queries in constant time.

56

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w?
in constant time.

public class CC

CC(Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components

component identifier for v

int id(int v
() (between 0 and count() - 1)

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

Connected components

Def. A connected component is a maximal set of connected vertices.

P
o o
o

.
LHIH

63 connected components

55

57

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Connected components demo

tinyG. txt
V\"13

5

LVVONOUOVOWROUVUIO VWO MO

58

To visit a vertex v:
* Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

done

<

marked[] id[]

W 00 N O VT D W N — O

—
o

T e T B I e R I R R
N NN NN — — O O O O O O

60

Connected components demo

To visit a vertex v:
* Mark vertex v as visited.

©

* Recursively visit all unmarked vertices adjacent to v.

0 v markedl] idl]
0 F -
1 F -
2 F -
(o) C—9 2P -
4 F -
5 F -
6 F -
H—©H O—®
8 F -
9 F -
10 F -
11 F -
12 F -
graph G
Finding connected components with DFS
public class CC
{
private boolean[] marked;
private int[] id; <«——+—— id[v] = id of component containing v
private int count; <«<————F+—— number of components
public CC(Graph G)
{
marked = new boolean[G.V(];
id = new int[G.VQ];
for (int v =0; v < G.VQ; v++)
{
if (!marked[v])
{ P run DFS from one vertex in
dfs(G, v); each component
count++;
}
}
}
public int count() . gmneadie
public int id(int v)
public boolean connected(int v, int w)
private void dfs(Graph G, int v)
}

59

61

Finding connected components with DFS (continued)

public int count()

{ return count: } <«———+— number of components
public int id(int v) <«<—+— id of component containing v
{ return id[v]; }

public boolean connected(int v, int w) v and w connected iff same id

{ return id[v] == id[w]; }

private void dfs(Graph G, int v)

{
n.1arked [v] = true; all vertices discovered in
id[v] = count; 1 same call of dfs have same id
for (int w : G.adj(v))
if (!'marked[w])
dfs(G, w);
}

62

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs.
« Vertex: pixel.

« Edge: between two adjacent pixels with grayscale value = 70.
» Blob: connected component of 20-30 pixels. N ek -0
ack =
white = 255

Particle tracking. Track moving particles over time.

64

Connected components application: study spread of STDs

P,
L
Mg ules® 8.8 //
*N\:/ YA ey,
he LR S ’
e \+Xl ¥, ’/0 i dae N e
- . | U
TR N TA /\
s A Pa S N
T4 B f*(“¢’
>R
A1 "3 AN,
,r" 7‘,*.7.1.,)* sy) .
¥ /e
AN, \ T
A% i Y —— \(/
7 . FEN
Y i T
12 e]
\F o Y
L
N A — o
\
Male
(.,_/——"_"'I/‘ .Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent
romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

4.1 UNDIRECTED GRAPHS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > Challenges

63

Graph-processing challenge 1 Bipartiteness application: is dating graph bipartite?

Problem. Is a graph bipartite?

Q. Q °
O'o(,,j,“o
Q T
/O O\ <0
0-2 do o 4 14
0-5 «OJO ® < Jo) Q ¢ o°
ORORC o L3 J
0-6 é o\o' O\:}O”o
Lo 1-3 ? o LY Q%
How difficult? e e o) (zo 8o O\OQQ/O(}O"O Lo 0 oo’ Q(;’og
« Any programmer could do it. 2-4 O/\%/O/Obo "-Qo s & %o C;;o, L o %0*%0
. oA . . 4-5 o e o ¢ 88
V'« Typical diligent algorithms student could do it. ® ° €8s o o
4-6 R ve é 8
00 QN &
 Hire an expert. \ ggggé@o%o . ' g,o
o9 e R { ~@-O
e Intractable. simple DFS-based solution OO/O O/Og?obgo o gfo © %7
N " (see textbook) 0-1 ~ o ® QOO D,OOQO PO
« No one knows. 0-2 o9 db oo %o qf e,
. 0-5 g o X
- Impossible. e s O/Q;O?oqcyogo—g Lo Db
10} \
1-3 OO O'é ° e}
2-3 O-9-0" QQO
2-4 %4 Se 0
4-5 009%° & °°
4-6 e} Image created by Mark Newman.
66
Graph-processing challenge 2 Bridges of Kénigsberg
Problem. Find a cycle. The Seven Bridges of Konigsberg. [Leonhard Euler 1736]
0 “...in Konigsberg in Prussia, there is an island A, called the
0-1
0-2 Kneiphof; the river which surrounds it is divided into two branches ...
0 a e 0-5 and these branches are crossed by seven bridges. Concerning these
0-6
_ bridges, it was asked whether anyone could arrange a route in such a
How difficult? 1-3 .
) e e 2-3 way that he could cross each bridge once and only once.”
« Any programmer could do it. 2-4
. e . . 4-5
v « Typical diligent algorithms student could do it. e Aot
. c
» Hire an expert. \ 0-5-4-6-0
« Intractable. simple DFS-based solution N o

(see textbook)
« No one knows.

« Impossible.

Euler cycle. Is there a (general) cycle that uses each edge exactly once?
Answer. A connected graph is Eulerian iff all vertices have even degree.

68

Graph-processing challenge 3 Graph-processing challenge 4

Problem. Find a (general) cycle that uses every edge exactly once. Problem. Find a cycle that visits every vertex exactly once.

A D WWNROOOO

OO uviui AOONO LN R

0-1
0-2
0-5
0-6
How difficult? g How difficult?
« Any programmer could do it. 2-4 « Any programmer could do it.
. - : : -4
v« Typical diligent algorithms student could do it. 431-5 » Typical diligent algorithms student could do it.
» Hire an expert. \ 4-6 « Hire an expert.
0-1-2-3-4-2-0-6-4-5-0 0=5-3-4-€-7-1-0
« Intractable. Euler cycle v« Intractable. Ve
(classic graph-processing problem) Hamilton cycle
« No one knows. » No one knows. (cassical NP-complete problem)
« Impossible. » Impossible.
70
Graph-processing challenge 5 Graph-processing challenge 6
Problem. Are two graphs identical except for vertex names? Problem. Lay out a graph in the plane without crossing edges?

0-1
0-2
O ®O® o
0-6
How difficult? e e ::‘5" How difficult?
« Any programmer could do it. , 4-5 « Any programmer could do it.
. - . , 4-6 . - . .
» Typical diligent algorithms student could do it. e » Typical diligent algorithms student could do it.
« Hire an expert. v« Hire an expert.
« Intractable. (3) 0-4 « Intractable. \ (0
v N k 0-5 N k linear-time DFS-based planarity algorithm
* O One KNows. e 0-6 ¢ 0 One Knows. discovered by Tarjan in 1970s
« Impossible. \ e 1-4 + Impossible. (too complicated for most practitioners) e e e
graph isomorphism is e ﬂ 1-5
longstanding open problem 2.4
"e Po=o
O =6 O

0<4, 1«3, 2<2, 3<6, 4<5, 5<0, 6<1

72

A DM WWOOOO

S vl O TN

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

v v E+V

path between s and t
shortest path between s and t
connected components
biconnected components
cycle
Euler cycle
Hamilton cycle
bipartiteness
planarity

graph isomorphism

v

v

E+V
E+V
E+V
E+V
E+V
91.657V
E+V
E+V
9cVViegV/

74

