
Princeton University
COS 217: Introduction to Programming Systems

GDB Reference and Tutorial for Assembly Language

Part 1: Reference
gcc217 -g -o program ... Assemble and link with debugging information
gdb [-d sourcefiledir] [-d sourcefiledir] ... program [corefile] Run GDB from a shell
ESC x gdb [-d sourcefiledir] [-d sourcefiledir] ... program [corefile] Run GDB from Emacs

Miscellaneous
quit Exit GDB.
directory [dir1] [dir2] ... Add directories dir1, dir2, ... to the list of directories searched for source files, or clear

the directory list.
help [cmd] Print a description command cmd

Running the Program
run [arg1],[arg2] … Run the program with command-line arguments arg1, arg2, ...
set args arg1 arg2 ... Set program's the command-line arguments to arg1, arg2, ...
show args Print the program's command-line arguments.

Using Breakpoints
info breakpoints Print a list of all breakpoints.
break label Set a breakpoint at the memory address denoted by label.
break fn Set a breakpoint at the third instruction of function fn.
condition bpnum expr Break at breakpoint bpnum only if expression expr is non-zero (TRUE).
commands [bpnum] cmd1 cmd2 ... Execute commands cmd1, cmd2, ... whenever breakpoint bpnum (or the current

breakpoint) is hit.
continue Continue executing the program.
kill Stop executing the program.
delete [bpnum1][,bpnum2]... Delete breakpoints bpnum1, bpnum2, ..., or all breakpoints.
clear [*addr] Clear the breakpoint at memory address addr, or the current breakpoint.
clear [fn] Clear the breakpoint at function fn, or the current breakpoint.
disable [bpnum1][,bpnum2]... Disable breakpoints bpnum1, bpnum2, ..., or all breakpoints.
enable [bpnum1][,bpnum2]... Enable breakpoints bpnum1, bpnum2, ..., or all breakpoints.

Stepping through the Program
next "Step over" the next instruction.
step "Step into" the next instruction.
finish "Step out" of the current function.

Examining Registers and Memory
info registers Print the contents of all registers.
print/f $reg Print the contents of register reg using format f. The format can be x (hexadecimal), d

(decimal), u (unsigned decimal), o (octal), a (address), c (character), or f (floating
point).

print/f label Print the contents of memory at the address denoted by label using format f.
x/rsf addr Examine the contents of memory at address addr using repeat count r, size s, and

format f. The repeat count is optional; it defaults to 1. The size is optional; it can be b
(byte), h (halfword), w (word), or g (double word). The format can be x
(hexadecimal), d (decimal), u (unsigned decimal), o (octal), a (address), c (character), f
(floating point), s (string), or i (instruction).

x/rsf $reg Examine the contents of memory at the address contained in register reg.
info display Print the display list.
display/f $reg At each break, print the contents of register reg using format f (as with a print

command).
display/si addr At each break, print the contents of memory at address addr using size s (as with an x

command).
display/ss addr At each break, print the string of size s that begins in memory at address addr (as with

an x command).
undisplay displaynum Remove displaynum from the display list

Page 1 of 6

Examining the Call Stack
where Print the call stack.
backtrace Print the call stack.
frame Print the top of the call stack.
up Move the context toward the bottom of the call stack.
down Move the context toward the top of the call stack

Page 2 of 6

P art 2: Tutorial

Motivation

Suppose you are developing the power.s program. Further suppose that the program
assembles and links cleanly, but is producing incorrect results at runtime. What can you
do to debug the program?

One approach is temporarily to insert calls of printf(...) or fprintf(stderr, ...) throughout
the code to get a sense of the flow of control and the values of variables at critical points.
That's fine, but often is inconvenient. It is especially inconvenient in assembly language:
the calls of printf() or fprintf() may change the values of registers, and thus may corrupt
the very data that you wish to view.

An alternative is to use GDB. GDB allows you to set breakpoints in your code, step
through your executing program one line at a time, examine the contents of registers and
memory at breakpoints, examine the function call stack, etc.

Building for GDB

To prepare to use GDB, build your program with the -g option:

$ gcc217 -g power.s -o power

Doing so places extra information into the power file that GDB uses.

Running GDB

The next step is to run GDB. You can run GDB directly from the shell. But it's much
handier to run it from within Emacs. So launch Emacs, with no command-line
arguments:

$ emacs

Now call the Emacs "gdb" function via these keystrokes:

<Esc key> x gdb <Enter Key> power <Enter key>

At this point you are executing GDB from within Emacs. GDB is displaying its (gdb)
prompt.

Running Your Program

Issue the run command to run the program:

(gdb) run

Page 3 of 6

GDB runs the program to completion, indicating that the "Program exited normally."
Command-line arguments and file redirection can be specified as part of the run
command.

Using Breakpoints

Set a breakpoint near the beginning of the main function using the break command:

(gdb) break main

Run the program:

(gdb) run

GDB pauses execution immediately after main()'s two-instruction function prolog. It
opens a second window in which it displays your source code, with the
about-to-be-executed line of code highlighted.

Issue the continue command to tell command GDB to continue execution past the
breakpoint:

(gdb) continue

GDB continues past the breakpoint at the beginning of main, and executes the program to
completion.

Stepping Through the Program

Run the program again:

(gdb) run

Execution pauses near the beginning of the main() function. Issue the next command to
execute the next instruction of your program:

(gdb) next

Continue issuing the next command repeatedly until the program ends.

The step command is the same as the next command, except that it commands GDB to
step into a called function which you have defined. The step command will not cause
GDB to step into a standard C function. Incidentally, the stepi (step instruction)
command will cause GDB to step into any function, including a standard C function.

Examining Registers

Run the program until execution reaches the breakpoint:

Page 4 of 6

(gdb) run

Issue the info registers command to examine the values of the registers:

(gdb) info registers

Issue the print command to examine the value of any particular register, say the EAX
register:

(gdb) print/d $eax

The "/d" syntax commands GDB to print data as a decimal integer. Another common
format is "/a", which commands GDB to print data as a hexadecimal address. Note that
you must precede the name of the register with '$' rather than '%'.

Examining Memory

Issue the print command to print the contents of memory denoted by a label:

(gdb) print/d iBase
(gdb) print/d iPower
(gdb) print/c cPrompt1

The "/c" syntax commands GDB to print the contents of a single byte of memory as an
ASCII character.

Issue the x command to examine memory at a given address:

(gdb) x/d &iBase
(gdb) x/d &iPower
(gdb) x/c &cPrompt1
(gdb) x/s &cPrompt1

The "/s" syntax commands GDB to examine memory as a null-terminated string.

Quitting GDB

Issue the quit command to quit GDB:

(gdb) quit

Then, as usual, type:

<Ctrl-x> <Ctrl-c>

to exit Emacs.

Page 5 of 6

Command Abbreviations

The most commonly used GDB commands have one-letter abbreviations (r, b, c, n, s, p).
Also, pressing the Enter key without typing a command tells GDB to reissue the previous
command.

Copyright © 2013 by Robert M. Dondero, Jr.

Page 6 of 6

	Princeton University
	COS 217: Introduction to Programming Systems
	GDB Reference and Tutorial for Assembly Language

