

Dynamic Memory Management

1

Goals of this Lecture

- Help you learn about:
 - · Dynamic memory management techniques
 - Garbage collection by the run-time system (Java)
 - Manual deallocation by the programmer (C, C++)
 - Design decisions for the "K&R" heap manager implementation
 - Circular linked-list of free blocks with a "first fit" allocation
 - · Coalescing of adjacent blocks to create larger blocks

Part 1:

What do malloc() and free() do?

3

Memory Layout: Heap char* string = "hello"; **Text** int iSize; RoData char* f() Data **BSS** char* p; Heap scanf("%d", &iSize); p = malloc(iSize); return p; Needed when required memory size is not **Stack** known before the program runs

Allocating & Deallocating Memory

- Dynamically allocating memory
 - Programmer explicitly requests space in memory
 - Space is allocated dynamically on the heap
 - E.g., using "malloc" in C, and "new" in Java
- Dynamically deallocating memory
 - · Must reclaim or recycle memory that is never used again
 - To avoid (eventually) running out of memory
- "Garbage"
 - Allocated block in heap that will not be accessed again
 - Can be reclaimed for later use by the program

Option #1: Garbage Collection

- Run-time system does garbage collection (Java)
 - Automatically determines objects that can't be accessed
 - And then reclaims the resources used by these objects

```
Object x = new Foo();
Object y = new Bar();
                              Object Foo ()
                              is never used
x = new Quux();
                                 again!
if (x.check something()) {
  x.do something(y);
System.exit(0);
```

Challenges of Garbage Collection

- Detecting the garbage is not always easy
 - "if (complex_function(y)) x = Quux();"
 - Run-time system cannot collect all of the garbage
- Detecting the garbage introduces overhead
 - Keeping track of references to objects (e.g., counter)
 - Scanning through accessible objects to identify garbage
 - · Sometimes walking through a large amount of memory
- Cleaning the garbage can lead to bursty delays
 - E.g., periodic scans of the objects to hunt for garbage
 - Leading to unpredictable "freeze" of the running program
 - · Very problematic for real-time applications
 - · ... though good run-time systems avoid long freezes

7

Option #2: Manual Deallocation

- Programmer deallocates the memory (C and C++)
 - Manually determines which objects can't be accessed
 - · And then explicitly returns the resources to the heap
 - E.g., using "free" in C or "delete" in C++
- Advantages
 - Lower overhead in many/most cases
 - No unexpected "pauses"
 - More efficient use of memory
- Disadvantages
 - · More complex for the programmer
 - Subtle memory-related bugs
 - · Security vulnerabilities in the (buggy) code

Manual Deallocation Can Lead to Bugs

- Dangling pointers
 - · Programmer frees a region of memory
 - ... but still has a pointer to it
 - Dereferencing pointer reads or writes *nonsense values*

```
int main(void) {
    char *p;
    p = malloc(10);
    free(p);
    putchar(*p);
```

May print nonsense character.

Manual Deallocation Can Lead to Bugs

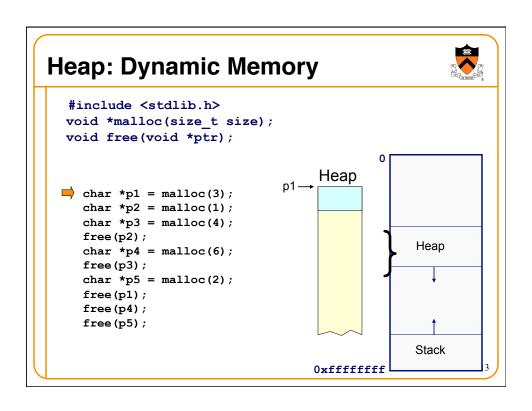
- Memory leak
 - Programmer neglects to free unused region of memory
 - So, the space can never be allocated again
 - Eventually may consume all of the available memory

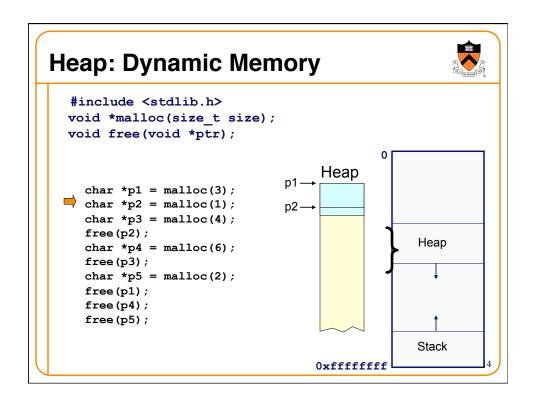
```
void f(void) {
    char *s;
    s = malloc(50);
    return;
}
int main(void) {
    while (1) f();
    return 0;
}
```

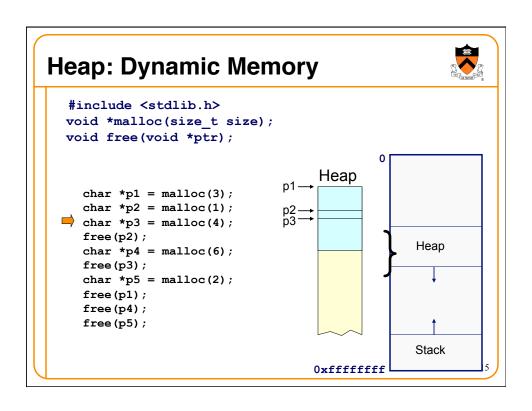
Eventually, malloc() returns **NULL**

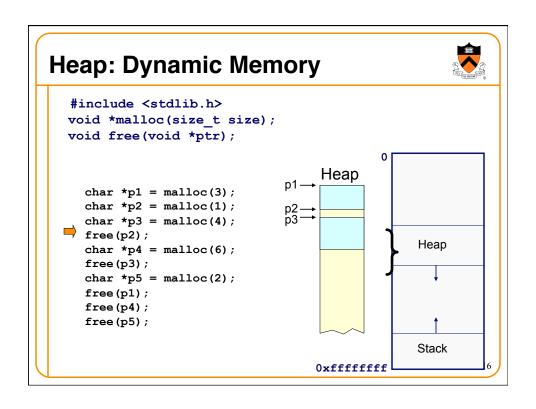
Manual Deallocation Can Lead to Bugs

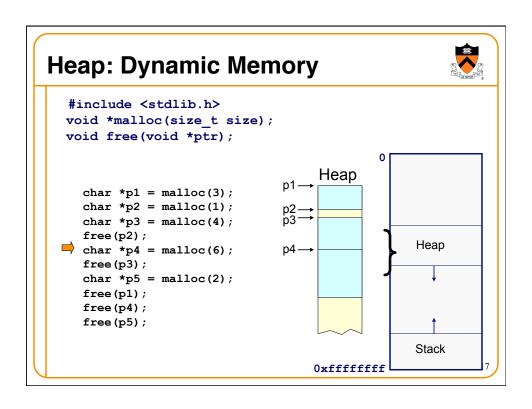
- Double free
 - Programmer mistakenly frees a region more than once
 - · Leading to corruption of the heap data structure
 - ... or premature destruction of a *different* object

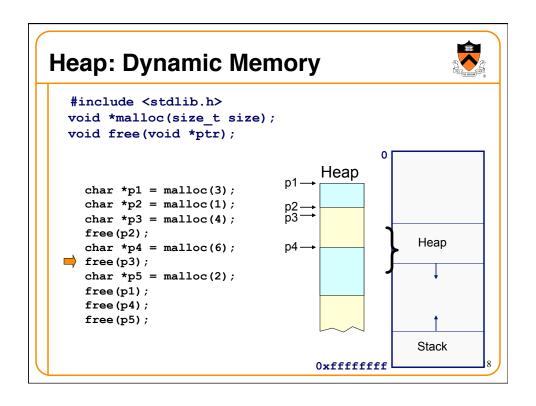

```
int main(void) {
    char *p, *q;
    p = malloc(10);
                             Might free the
    free(p);
                             space allocated
    q = malloc(10);
                                 to q!
    free(p);
```

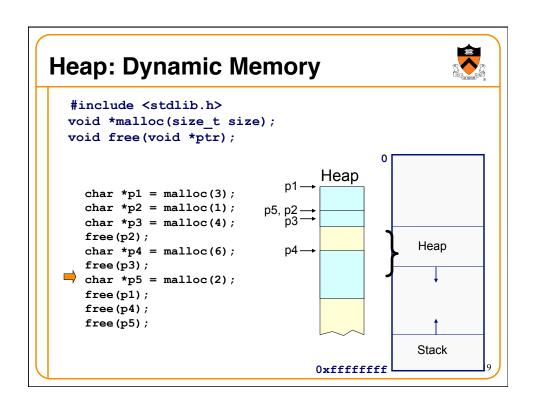

malloc() and free() Challenges

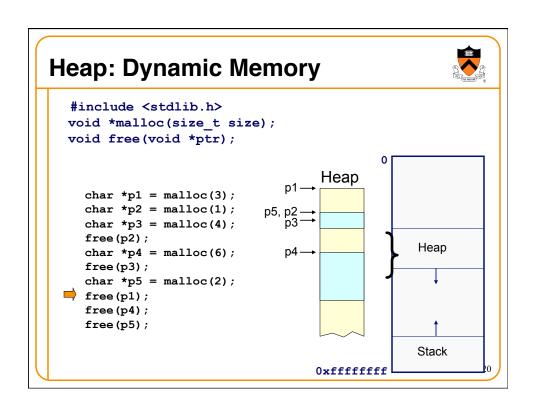


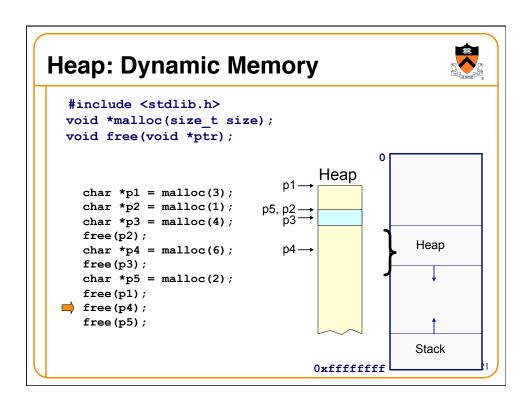

- •malloc() may ask for arbitrary number of bytes
- Memory may be allocated & freed in different order
- Cannot reorder requests to improve performance

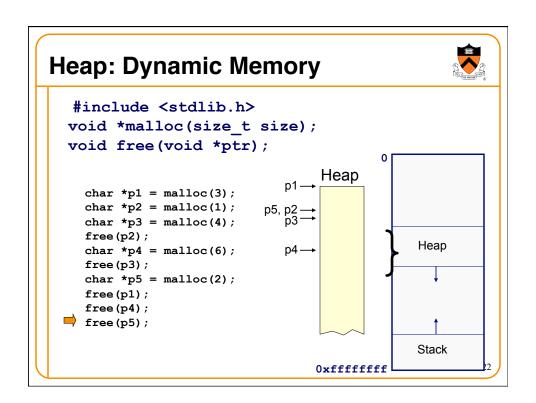

```
char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free (p2);
char *p4 = malloc(6);
free (p3);
char *p5 = malloc(2);
free (p1);
free (p4);
free (p5);
```

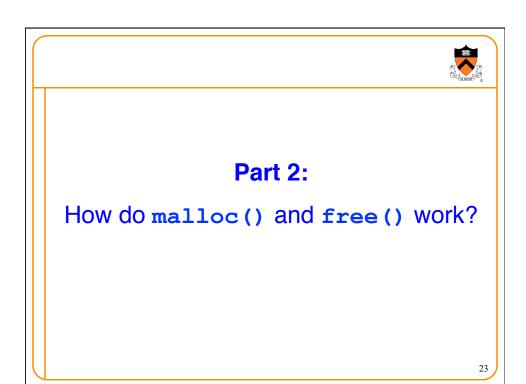


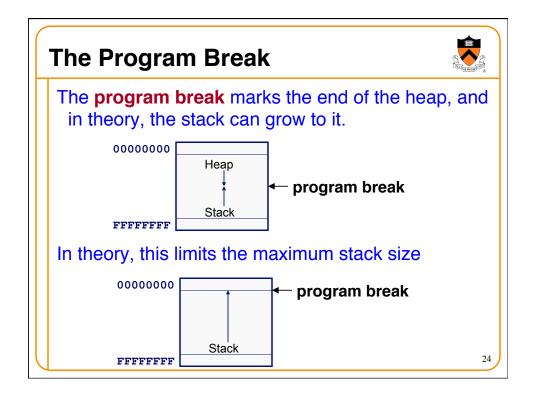












Acquiring Heap Memory

Q: How does malloc() acquire heap memory?

A: Moves the program break downward via **sbrk()** or **brk()** system call

void *sbrk(intptr t increment);

- Increment the program break by the specified amount. Calling the function with an increment of 0 returns the current location of the program break. Return 0 if successful and -1 otherwise.
- Beware: On Linux contains a known bug; should call only with argument 0.

int brk(void *newBreak);

 Move the program break to the specified address. Return 0 if successful and -1 otherwise.

2

Using Heap Memory

Q: Having acquired heap memory, how do malloc() and free() manipulate it?

A: Many different approaches; an introduction...

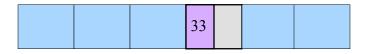
Goals for malloc() and free()

- Maximizing throughput
 - · Maximize number of requests completed per unit time
 - Need both malloc() and free() to be fast
- Maximizing memory utilization
 - Minimize the amount of wasted memory
 - Need to minimize size of data structures
- Strawman #1: free() does nothing
 - Good throughput, but poor memory utilization
- Strawman #2: malloc() finds the "best fit"
 - · Good memory utilization, but poor throughput

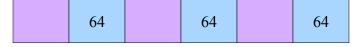
27

Keeping Track of Free Blocks

- · Maintain a list of free blocks of memory
 - Allocate memory from one of the blocks in the free list
 - Deallocate memory by returning the block to the free list
 - When necessary, call brk () to ask OS for additional memory, and create a new large block
- Design questions
 - How to keep track of the free blocks in memory?
 - How to choose an appropriate free block to allocate?
 - What to do with the left-over space in a free block?
 - What to do with a block that has just been freed?


free	free	free

8.


Need to Minimize Fragmentation

- Internal fragmentation
 - Allocated block is larger than malloc() requested
 - E.g., malloc() imposes a minimum size (e.g., 64 bytes)

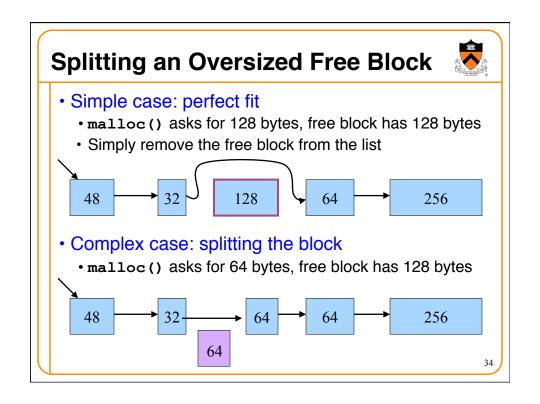
- External fragmentation
 - Enough free memory exists, but no block is big enough
 - E.g., malloc() asks for 128 contiguous bytes

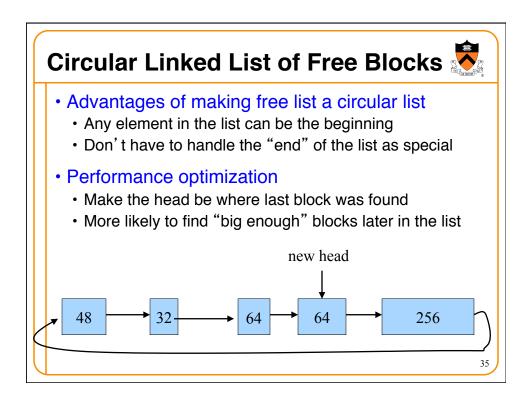
29

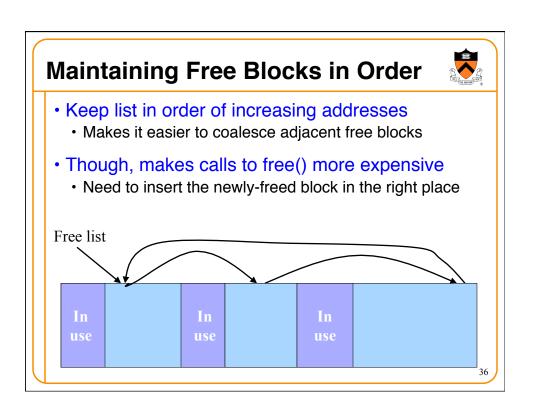
Simple "K&R-Like" Approach

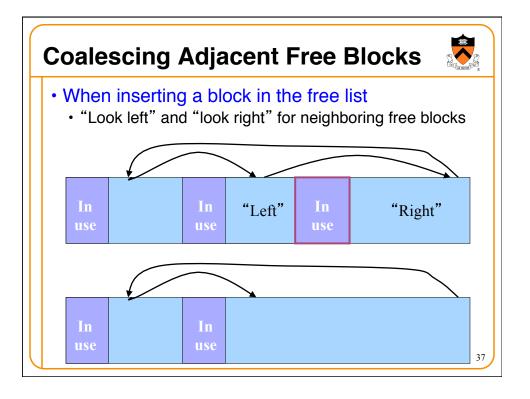
- Memory allocated in multiples of a base size
 - E.g., 16 bytes, 32 bytes, 48 bytes, ...
- Linked list of free blocks
 - malloc() and free() walk through the list to allocate and deallocate
- malloc() allocates the *first* big-enough block
 - To avoid sequencing further through the list
- malloc() splits the free block
 - · To allocate what is needed, and leave the rest available
- Linked list is circular
 - · To be able to continue where you left off
- Linked list in the order the blocks appear in memory
 - To be able to "coalesce" neighboring free blocks

Allocate Memory in Multiples of Base Size


- Allocate memory in multiples of a base size
 - · Avoid maintaining very tiny free blocks
 - Align memory on size of largest data type (e.g., double)
- Requested size is "rounded up"
 - · Allocation in units of base_size
 - Round:(nbytes + base_size 1)/base_size
- Example:
 - Suppose nbytes is 37
 - And base_size is 16 bytes
 - Then (37 + 16 1)/16 is 52/16 which rounds down to 3


16 16 5


31


Linked List of Free Blocks • Linked list of free blocks • malloc() allocates a big-enough block Allocated • free () adds newly-freed block to the list Newly freed

"First-Fit" Allocation Handling a request for memory (e.g., malloc()) Find a free block that satisfies the request Must have a "size" that is big enough, or bigger Simplest approach: first fit Sequence through the linked list Stop upon encountering a "big enough" free block Example: request for 64 bytes First-fit algorithm stops at the 128-byte block

Conclusion

- Elegant simplicity of K&R malloc() and free()
 - Simple header with pointer and size in each free block
 - · Simple circular linked list of free blocks
 - Relatively small amount of code (~25 lines each)
- Limitations of K&R functions in terms of efficiency
 - malloc() requires scanning the free list
 - To find the first free block that is big enough
 - free () requires scanning the free list
 - To find the location to insert the to-be-freed block