Network Measurement
COS 461 Recitation
http://www.cs.princeton.edu/courses/archive/spr13/cos461/

Why Measure the Network?

• **Scientific discovery**
 – Characterizing traffic, topology, performance
 – Understanding protocol performance and dynamics

• **Network operations**
 – Billing customers
 – Detecting, diagnosing, and fixing problems
 – Planning outlay of new equipment

Types of Measurement

- end-to-end performance
 - average download time of a web page
 - TCP bulk throughput
 - end-to-end delay and loss

- traffic matrix
 - link error rate
 - link utilization
 - active topology
 - demand matrix
 - active routes
 - topology, configuration, routing

Traffic Measurement
Packet Monitoring

• Definition
 – Passively collecting IP packets on one or more links
 – Recording IP, TCP/UDP, or application-layer traces

• Scope
 – Fine-grain information about user behavior
 – Passively monitoring the network infrastructure
 – Characterizing traffic and diagnosing problems

Monitoring a LAN Link

Monitoring a WAN Link

Selecting the Traffic

• Filter to focus on a subset of the packets
 – IP addresses/prefixes (e.g., to/from specific sites)
 – Protocol (e.g., TCP, UDP, or ICMP)
 – Port numbers (e.g., HTTP, DNS, BGP, Napster)

• Collect first n bytes of packet
 – Medium access control header (if present)
 – IP header (typically 20 bytes)
 – IP+UDP header (typically 28 bytes)
 – IP+TCP header (typically 40 bytes)
 – Application-layer message (entire packet)
What to measure to..

- Understand router workload model
 - Distribution of packet sizes
- Quantify web transfer sizes
 - Number of packets/bytes per connection
- Know which servers are popular & who their heavy clients are
 - Collect source/destination IP address (on port 80)
 - Collection application URLs (harder!)
- Know if a denial-of-service attack is underway
 - SYN flooding (spoofable)
 - Unusual # requests to particular (potentially expensive) page

Analysis of IP Header Traces

- Source/destination addresses
 - Identity of popular Web servers & heavy customers
- Distribution of packet delay through the router
 - Identification of typical delays and anomalies
- Distribution of packet sizes
 - Workload models for routers
- Burstiness of the traffic on the link over time
 - Provisioning rules for allocating link capacity
- Throughput between pairs of src/dest addresses
 - Detection and diagnosis of performance problems

TCP Header Analysis

- Source and destination port numbers
 - Popular applications; parallel connections
- Sequence/ACK numbers and packet timestamps
 - Out-of-order/lost packets; throughput and delay
- Number of packets/bytes per connection
 - Web transfer sizes; frequency of bulk transfers
- SYN flags from client machines
 - Unsuccessful requests; denial-of-service attacks
- FIN/RST flags from client machines
 - Frequency of Web transfers aborted by clients

Packet Contents

- Application-layer header
 - HTTP and RTSP request and response headers
 - FTP, NNTP, and SMTP commands and replies
 - DNS queries and responses; OSPF/BGP messages
- Application-layer body
 - HTTP resources (or checksums of the contents)
 - User keystrokes in Telnet/Rlogin sessions
Application-Layer Analysis

- **URLs from HTTP request messages**
 - Popular resources/sites; benefits of caching

- **Meta-data in HTTP request/response messages**
 - Content type, cacheability, change frequency, etc.
 - Browsers, protocol versions, protocol features, etc.

- **Contents of DNS messages**
 - Common queries, error frequency, query latency

- **Contents of Telnet/Rlogin sessions**
 - Intrusion detection (break-ins, stepping stones)

Flow Measurement (e.g., NetFlow)

IP Flows

- **Set of packets that “belong together”**
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)

- **Packets that are “close” together in time**
 - Maximum spacing between packets (e.g. 30 sec)
 - E.g.: flows 2 and 4 are different flows due to time

Flow Abstraction

- **Not exactly the same as a “session”**
 - Sequence of related packets may be multiple flows
 - Related packets may not follow the same links
 - “Session” is hard to measure from inside network

- **Motivation for this abstraction**
 - As close to a “session” as possible from outside
 - Router optimization for forwarding/access-control
 - ... might as well throw in a few counters
Traffic Statistics (e.g., Netflow)

• Packet header info
 – Source and destination addresses and port #s
 – Other IP & TCP/UDP header fields (protocol, ToS)

• Aggregate traffic information
 – Start and finish time (time of first & last packet)
 – Total # of bytes and number of packets in the flow
 – TCP flags (e.g., logical OR over sequence of packets)

 SYN | ACK | ACK | FIN

 start | 4 packets | 1436 bytes | SYN, ACK, & FIN | finish

Recording Routing Information

• Input and output interfaces
 – Input interface is where packets entered the router
 – Output interface is “next hop” in forwarding table

• Source and destination IP prefix (mask length)
 – Longest prefix match on src and dest IP addresses

Packet vs. Flow Measurement

• Basic statistics (available from both techniques)
 – Traffic mix by IP addresses, port numbers, protocol
 – Average packet size

• Traffic over time
 – Both: traffic volumes on medium-to-large time scale
 – Packet: burstiness of the traffic on a small time scale

• Statistics per TCP connection
 – Both: volume of traffic transferred over the link
 – Packet: frequency of lost or out-of-order packets
Collecting Flow Measurements

- Route CPU that generates flow records
 - ...may degrade forwarding performance
- Line card that generates flow records
 - ...more efficient to support measurement in each line card
- Packet monitor that generates flow records
 - ...third party

Mechanics: Flow Cache

- Maintain a cache of active flows
 - Storage of byte/packet counts, timestamps, etc.
- Compute a key per incoming packet
 - Concatenation of source, destination, port #s, etc.
- Index into the flow cache based on the key
 - Creation or updating of an entry in the flow cache

Mechanics: Evicting Cache Entries

- Flow timeout
 - Remove flows not receiving a packet recently
 - Periodic sequencing to time out flows
 - New packet triggers the creation of a new flow
- Cache replacement
 - Remove flow(s) when the flow cache is full
 - Evict existing flow(s) upon creating a cache entry
 - Apply eviction policy (LRU, random flow, etc.)
- Long-lived flows
 - Remove flow(s) persisting a long time (e.g., 30 min)

Measurement Overhead

- Per-packet overhead
 - Computing the key and indexing flow cache
 - More work when the average packet size is small
 - May not be able to keep up with the link speed
- Per-flow overhead
 - Creation and eviction of entry in the flow cache
 - Volume of measurement data (# of flow records)
 - Larger # of flows when # packets per flow is small
 - May overwhelm system collecting/analyzing data
Sampling: Packet Sampling

- Packet sampling before flow creation
 - 1-out-of-m sampling of individual packets
 - Creation of flow records over the sampled packets

- Reducing overhead
 - Avoid per-packet overhead on \((m-1)/m\) packets
 - Avoid creating records for many small flows

Motivation for BGP Monitoring

- Visibility into external destinations
 - What neighboring ASes are telling you
 - How you are reaching external destinations

- Detecting anomalies
 - Increases in number of destination prefixes
 - Lost reachability or instability of some destinations

- Input to traffic-engineering tools
 - Knowing the current routes in the network

- Workload for testing routers
 - Realistic message traces to play back to routers

BGP Monitoring

- Ideally: know what the router knows
 - All externally-learned routes
 - Before applying policy and selecting best route

- How to achieve this
 - Special monitoring session on routers that tells everything they have learned
 - Packet monitoring on all links with BGP sessions

- If you can’t do that, you could always do...
 - Periodic dumps of routing tables
 - BGP session to learn best route from router
Using Routers to Monitor BGP

Talk to operational routers using SNMP or telnet at command line
Establish a “passive” BGP session from a workstation running BGP software

(-) BGP table dumps are expensive
(+) Table dumps show all alternate routes
(-) Update dynamics lost
(-) Restricted to interfaces provided by vendors
(+) BGP table dumps do not burden operational routers
(-) Receives only best route from BGP neighbor
(+) Update dynamics captured
(+) Not restricted to interfaces provided by vendors

Route Monitor

BGP Table ("show ip bgp" at RouteViews)

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0.0.0</td>
<td>205.215.45.50</td>
<td>0</td>
<td>4006</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td>167.142.3.6</td>
<td>0</td>
<td>0</td>
<td>5056</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td>157.22.9.7</td>
<td>0</td>
<td>0</td>
<td>715</td>
<td>1701</td>
<td>80 i</td>
</tr>
<tr>
<td>195.219.96.239</td>
<td>0</td>
<td>0</td>
<td>8297</td>
<td>6453</td>
<td>701 80 i</td>
</tr>
<tr>
<td>195.211.29.254</td>
<td>0</td>
<td>0</td>
<td>5409</td>
<td>6667</td>
<td>6427 3356 701 80 i</td>
</tr>
<tr>
<td>12.127.0.249</td>
<td>0</td>
<td>0</td>
<td>7018</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td>213.200.87.254</td>
<td>929</td>
<td>0</td>
<td>3297</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td>9.184.112.020</td>
<td>0</td>
<td>0</td>
<td>4006</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td>205.215.45.50</td>
<td>0</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td>195.66.225.254</td>
<td>0</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td>203.62.248.4</td>
<td>0</td>
<td>0</td>
<td>1221</td>
<td>3786</td>
<td>13326 701 80 i</td>
</tr>
<tr>
<td>167.142.3.6</td>
<td>0</td>
<td>0</td>
<td>5056</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td>195.219.96.239</td>
<td>0</td>
<td>0</td>
<td>8297</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td>195.211.29.254</td>
<td>0</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>3786 i</td>
</tr>
</tbody>
</table>

AS 80 is General Electric, AS 701 is UUNET, AS 7018 is AT&T
AS 3786 is DACOM (Korea), AS 1221 is Telstra

BGP Events

- Group of BGP updates that “belong together”
 - Same IP prefix, originating AS, or AS_PATH
- Updates that are “close” together in time
 - Maximum spacing between packets (e.g. 30 sec)
 - E.g.: events 2 and 4 are separated in time

BGP is not a flooding protocol
Conclusions

• Measurement is crucial to network operations
 – Measure, model, control
 – Detect, diagnose, fix

• Network measurement is challenging
 – Large volume of measurement data
 – Multi-dimensional data

• Great way to understand the Internet
 – Popular applications, traffic characteristics
 – Internet topology, routing dynamics