Applications of DHTs

COS 461: Computer Networks
Recitation #6

http://www.cs.princeton.edu/courses/archive/spr13/cos461/

The Chord DHT

• ID space mod 2^{160}

 - keyid = SHA1 (name)

 - nodeid = SHA1 (IP addr, i)

 for i=1..v virtual IDs

 Each virtual ID maintains own routing table and keyspace

 • Now vN nodes, rather than N nodes. Each machine still owns $\sum_{i=1}^{vN} \frac{1}{N}$ of total keyspace

 • Key assigned to the next node found traversing the DHT ring in clockwise direction

Q1: Fill in the routing tables for node(s) above
Q2: What node(s) will receive query from node 1 for item with key 5? Assume iterative routing.

Suppose node 4 crashes, and system converges to a new state.
Q3: What routing entries changed?
Q4: What nodes will now receive query from node 7 for item 5?
Using DHTs for application-layer multicast routing

“SplitStream: High-Bandwidth Multicast in Cooperative Environments”
SOSP, 2003

Problem with P2P multicast

- Goals for application
 - Capacity-aware bandwidth utilization
 - High tolerance of network churn
 - Load balance for all the end hosts
- P2P environment
 - Peers contribute resources
 - Different peers may have different limitations
- Challenge: tree-based multicast places high demand on few internal nodes

High-level design

- Split data into stripes, each over its own tree
- Recover data from any m-out-of-n stripes
- Each node is internal to only one tree

Background: DHT routing

- Built on Pastry DHT
- Visualize like Chord ring, but now correct for most-significant bit of address during each hop
- Log(n) state, log(n) hops
- Use proximity selection when choosing neighbors
Scribe publish/subscribe system
- Topics map to nodes
- Subscribers register to receive topic updates
- Publishers push updates to topicID
- Message propagate back subscriber tree
- Insight: Convergence of lookup paths towards key's node

Design of SplitStream
- Choosing groupids for the Scribe multicast trees that differ in the most significant digit ensures the property that each node is internal to only one tree and a leaf in the rest

Design of SplitStream
- Divides data into stripes, each using one Scribe multicast tree
- Choosing groupids for the trees that all differ in the most significant digit ensures property that each node is internal to only one tree
 - Inbound bandwidth: can achieve desired indegree while this property holds
 - Outbound bandwidth: Harder: we'll have to look at the node join algorithm to see how this works

New Children Adoption
001* requests to join stripe 0800, but 080* has reached its outdegree limit of 4
080* accepts 001* and drops 9* because it did not share the first digit with 080*
085* requests to join
080* accepts 085* and drops 001* because it has a shorter prefix match with stripe 0800 than the other children
Spare Capacity Group

- Orphaned nodes recursively try to reattach to their former siblings, but if that does not work..