Routing Recitation #3

COS 461: Computer Networks Spring 2013

Outline

- Fork()
- Wireshark
- Practice routing questions

Handle Multiple Clients using fork()

- Steps to handle multiple clients
 - Go to a loop and accept connections using accept()
 - After a connection is established, call fork() to create a new child process to handle it
 - Go back to listen for another socket in the parent process
 - close() when you are done

3

```
while (1) {
  fd = accept (srv_fd, (struct sockaddr *) &caddr, &clen);
  ...
  pid = fork(); children++;
  /* child process to handle request */
  if (pid == 0) {
      /* exit(0) on success, exit(1) on error */
  }
  /* parent process */
  else if (pid > 0) {
      while ((waitpid(-1, &status, WNOHANG)) > 0)
            children--;
      if (children > MAX_PROCESSES)
            ...
  }
  else {
    perror("ERROR on fork");
    exit(1);
}}
```

Wireshark

- Selecting and listening on interface
 - Root for promiscuous mode: sniff on neighbors!
- Writing filters to select packets
 - "udp.dstport == 53", "http.request_method is present"
- Examining packet formats
 - Look at Ethernet, IP, TCP, HTTP headers
- Following TCP streams
 - Trace HTTP request(s) belonging to a TCP connection

Questions

Link State (Djikstra's)

dest	link
b	(a,?)
С	(a,?)
d	(a,?)
е	(a,?)
f	(a,?)

Link State (Djikstra's)

b	(a,b)
С	(a,?)
d	(a,?)
e	(a,?)
f	(a,?)

link

dest |

Link State (Djikstra's)

dest	link
b	(a,b)
С	(a,f)
d	(a,?)
е	(a,?)
f	(a,?)

Link State (Djikstra's)

dest	link
b	(a,b)
С	(a,f)
d	(a,f)
е	(a,?)
f	(a,?)

Link State (Djikstra's)

dest	link
b	(a,b)
С	(a,f)
d	(a,f)
e	(a,f)
f	(a,?)

Link State (Djikstra's)

dest	link
b	(a,b)
С	(a,f)
d	(a,f)
e	(a,f)
f	(a,f)

Which routing protocol requires the least amount of state on the router?

Which of the following, if true, ensures

packets from a to e always traverse c?

- a) link state
- b) distance vector
- c) path vector

Which routing protocol requires the least amount of state on the router?

- a) link state
- b) distance vector
- c) path vector

Which of the following, if true, ensures packets from a to e always traverse c?

- Y > 3

Which of the following, if true, ensures packets from b to e *always* traverse d?

- A or B

Which of the following, if true, ensures packets from b to e always traverse d?

- Y > X
- A or B

