Course Overview

Mike Freedman
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr13/cos461/

Course Logistics

• Last assignment
 – Due on Dean’s Date (11:59pm Tuesday May 14)

• Final exam
 – Cumulative, emphasis on second half of the class
 – Friday May 17th at 7:30-9:30pm

• Questions?
 – Ask on piazza
 – Office hours will be posted to piazza

Key Concepts in Networking

(Exam preparation idea: look for other examples)

Some Key Concepts

• Course was organized around protocols
 – But a small set of concepts recur in many protocols

• General CS concepts
 – Hierarchy, indirection, caching, randomization

• Networking-specific concepts
 – Soft state, layering, (de)multiplexing
 – End-to-end argument
Hierarchy

• Scalability of large systems
 – Cannot store all information everywhere
 – Cannot centrally coordinate everything
• Hierarchy to manage scale
 – Divide system into smaller pieces
• Hierarchy to divide control
 – Decentralized management
• Examples in the Internet
 – IP addresses, routing protocols, DNS, peer-to-peer

Hierarchy: IP Address Blocks

• Number related hosts from a common subnet
 – 1.2.3.0/24 on the left LAN
 – 5.6.7.0/24 on the right LAN

Hierarchy: Routing Protocols

• AS-level topology
 – Nodes are Autonomous Systems (ASes)
 – Edges are links and business relationships
 – Hides the detail within each AS’s network
Hierarchy: Routing Protocols

- Interdomain routing ignores details in an AS
 - Routers flood information to learn the topology
 - Routers determine “next hop” to other routers...
 - By computing shortest paths based on link weights

Hierarchy: Domain Name System

- Labeled A through M

Hierarchy: Domain Name System

- Generic domains: `com`, `edu`, `...`, `org`
- Country domains: `ac`, `...`, `uk`, `zw`
- `my.east.bar.edu`
- `usr.cam.ac.uk`
- `12.34.56.0/24`

Hierarchy: Super Peers in KaZaA

- Each peer is either group leader or assigned to group leader
 - TCP connection between peer and its group leader
 - TCP connections between some pairs of group leaders
- Group leader tracks the content in all its children
Indirection

- Referencing by name
 - Rather than the value itself
 - E.g., manipulating a variable through a pointer

- Benefits of indirection
 - Human convenience
 - Reducing overhead when things change

- Examples of indirection in the Internet
 - Names vs. addresses
 - Mobile IP

Indirection: Names vs. Addresses

- Host name to IP address
 - Mnemonic names to location-dependent addresses
 - E.g., from www.cnn.com to 64.236.16.20
 - Using the Domain Name System (DNS)

- From IP address to MAC address
 - From hierarchical global address to interface card
 - E.g., from 64.236.16.20 to 00-15-C5-49-04-A9
 - Using the Address Resolution Protocol (ARP)

Indirection: Mobile IP

Caching

- Duplicating data stored elsewhere
 - To reduce latency for accessing the data
 - To reduce resources consumed

- Caching is often quite effective
 - Speed difference between cache and primary copy
 - Locality of reference, and small set of popular data

- Examples from the Internet
 - DNS caching, Web caching
Caching: DNS Caching

- Application
- DNS resolver
- Local DNS server
- DNS cache
- Root server
- Top-level domain server
- Second-level domain server

Caching: Web Caching

- Caching location
 - Proxy cache
 - Browser cache
- Better performance
 - Lower RTT
 - Existing connection
 - Less network load

Randomization

- Distributed adaptive algorithms
 - Multiple distributed parties
 - Adapting independently
- Risk of synchronization
 - Many parties reacting at the same time
 - Leading to bad aggregate behavior
- Randomization can desynchronize
 - Ethernet back-off, Random Early Detection
- Rather than imposing centralized control

Randomization: Ethernet Back-off

- Random access: exponential back-off
 - After collision, wait random time before retrying
 - After mth, choose K randomly from \(\{0, ..., 2^m-1\} \)
 - Wait for \(K \times 512 \) bit times before trying again
Randomization: Dropping Packets Early

- Congestion on a link
 - Eventually the queue becomes full
 - And new packets must be dropped
- Drop-tail queuing leads to bursty loss
 - Many packets encounter a full queue
 - Many TCP senders reduce their sending rates

Randomization: Dropping Packets Early

- Better to give early feedback
 - Get a few connections to slow down
 - ... before it is too late
- Random Early Detection (RED)
 - Randomly drop packets when queue (near) full
 - Drop rate increases as function of queue length

Soft State

- State: stored in nodes by network protocols
 - Installed by receiver of a set-up message
 - Updated when conditions change
- Hard state: valid unless told otherwise
 - Removed by receiver of tear-down message
 - Requires error handling to deal with sender failure
- Soft state: invalid if not told to refresh
 - Periodically refreshed, removed by timeout
- Soft state reduces complexity
 - DNS caching, DHCP leases

Soft State: DNS Caching

- Cache consistency is a hard problem
 - Ensuring the cached copy is not out of date
- Strawman: explicit revocation or updates
 - Keep track of everyone who has cached information
 - If name-to-host mapping changes, update caches
- Soft state solution
 - DNS responses include a “time to live” (TTL) field
 - Cached entry is deleted after TTL expires
Soft State: DHCP Leases

- DHCP "offer message" from the server
 - Configuration parameters (proposed IP address, mask, gateway router, DNS server, ...)
 - Lease time (the time information remains valid)

- Why is a lease time necessary?
 - Client can release address (DHCP RELEASE)
 - E.g., "ipconfig /release" or clean shutdown of computer
 - But, the host might not release the address
 - E.g., the host crashes or buggy client software
 - You don’t want address to be allocated forever

Layering: A Modular Approach

- Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
- Interface between layers defines interaction
 - Hides implementation details
 - Layers can change without disturbing other layers

Layering: Standing on Shoulders

Layering: Internet Protocol Suite

The waist facilitates interoperability
Layering: Encapsulation of Data

- Different devices switch different things
 - Physical layer: electrical signals (repeaters and hubs)
 - Link layer: frames (bridges and switches)
 - Network layer: packets (routers)

Demultiplexing

- Separating multiple streams out of one
 - Recognizing the separate streams
 - Treating the separate streams accordingly

Examples in the Internet

End-to-End Principle
Whenever possible, communications protocol operations should be defined to occur at the end-points of a communications system.

Programmability
With programmable end hosts, new network services can be added at any time, by anyone.
Why No Math in This Course?

- Hypothesis #1: theory not relevant to Internet
 - Body of math created for telephone networks
 - Many of these models don’t work in data networks

- Hypothesis #2: too many kinds of theory
 - Queuing: statistical multiplexing works
 - Control: TCP congestion control works
 - Optimization: TCP maximizes aggregate utility
 - Game: reasoning about competing ASes

What Will Happen to the Internet

No Strict Notions of Identity

- Leads to
 - Spam
 - Spoofing
 - Denial-of-service
 - Route hijacking

Protocols Designed Based on Trust

- That you don’t spoof your addresses
 - MAC spoofing, IP address spoofing, spam, …

- That port numbers correspond to applications
 - Rather than being arbitrary, meaningless numbers

- That you adhere to the protocol
 - Ethernet exponential back-off after a collision
 - TCP additive increase, multiplicative decrease

- That protocol specifications are public
 - So others can build interoperable implementations
Nobody in Charge

- Traffic traverses many Autonomous Systems
 - Who’s fault is it when things go wrong?
 - How do you upgrade functionality?
- Implicit trust in the end host
 - What if some hosts violate congestion control?
- Anyone can add any application
 - Whether or not it is legal, moral, good, etc.
- Spans many countries
 - So no one government can be in charge

Challenging New Requirements

- Disseminating data
- Mobile, multi-homed hosts
- Sometimes-connected hosts
- Large number of hosts
- Real-time applications

The Internet of the Future

- Can we fix what ails the Internet
 - Security, performance, reliability
 - Upgradability, managability
 - <Your favorite gripe here>
- Without throwing out baby with bathwater
 - Ease of adding new hosts
 - Ease of adding new services
 - Ease of adding new link technologies
- An open technical and policy question...

Thank You!