

Software Defined Networking

Mike Freedman
COS 461: Computer Networks

Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr13/cos461/

The Internet: A Remarkable Story

- Tremendous success
 - From research experiment to global infrastructure

- Brilliance of under-specifying
 - Network: best-effort packet delivery
 - Hosts: arbitrary applications
- Enables innovation in applications
 - Web, P2P, VoIP, social networks, virtual worlds
- But, change is easy only at the edge... 🕾

Inside the 'Net: A Different Story...

- · Closed equipment
 - Software bundled with hardware
 - Vendor-specific interfaces
- Over specified
 - Slow protocol standardization

- Equipment vendors write the code
- Long delays to introduce new features

Impacts performance, security, reliability, cost...

Networks are Hard to Manage

- Operating a network is expensive
 - More than half the cost of a network
 - Yet, operator error causes most outages

- Routers with 20+ million lines of code
- Cascading failures, vulnerabilitiesf, etc.
- The network is "in the way"
 - Especially in data centers and the home

Creating Foundation for Networking

- A domain, not (yet?) a discipline
 - Alphabet soup of protocols
 - Header formats, bit twiddling
 - Preoccupation with artifacts
- From practice, to principles
 - Intellectual foundation for networking
 - Identify the key abstractions
 - ... and support them efficiently
- To build networks worthy of society's trust

Rethinking the "Division of Labor"

Death to the Control Plane!

- Simpler management
 - No need to "invert" control-plane operations
- Faster pace of innovation
 - Less dependence on vendors and standards
- · Easier interoperability
 - Compatibility only in "wire" protocols
- Simpler, cheaper equipment
 - Minimal software

OpenFlow Networks

Data-Plane: Simple Packet Handling @ OpenFlow · Simple packet-handling rules - Pattern: match packet header bits - Actions: drop, forward, modify, send to controller - Priority: disambiguate overlapping patterns - Counters: #bytes and #packets 1. src=1.2.*.*, dest=3.4.5.* → drop 2. src = *.*.*, dest=3.4.*.* → forward(2)

3. src=10.1.2.3, dest=*.*.*.* → send to controller

Unifies Different Kinds of Boxes

- Router
 - Match: longest destination IP prefix
 - Action: forward out a link
- Switch
 - Match: dest MAC address - Action: forward or flood

(A) RIB

- Firewall
 - Match: IP addresses and TCP / UDP port numbers
 - Action: permit or deny
- NAT
 - Match: IP address and port - Action: rewrite addr and port

OpenFlow questions · OpenFlow designed for (A) Inter-domain management (between) (B) Intra-domain management (within) • OpenFlow API to switches open up the (B) FIB · OpenFlow FIB match based on (A) Exact match (e.g., MAC addresses) (B) Longest prefix (e.g., IP addresses) (C) It's complicated

Example OpenFlow Applications

- Dynamic access control
- Seamless mobility/migration
- Server load balancing
- Network virtualization
- Using multiple wireless access points
- Energy-efficient networking
- · Adaptive traffic monitoring
- Denial-of-Service attack detection

See http://www.openflow.org/videos/

Controller and the FIB

- · Forwarding rules should be added
 - (A) Proactively
 - (B) Reactively (e.g., with controller getting first packet)
 - (C) Depends on application

OpenFlow in the Wild

- Open Networking Foundation
 - Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom, and many other companies
- Commercial OpenFlow switches
 - Intel, HP, NEC, Quanta, Dell, IBM, Juniper, ...
- Network operating systems
 - NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic
- Network deployments
 - Eight campuses, and two research backbone networks
 - Commercial deployments (e.g., Google backbone)

A Helpful Analogy

From Nick McKeown's talk "Making SDN Work" at the Open Networking Summit, April 2012

6

Testing and Debugging

- OpenFlow makes programming possible
 - Network-wide view at controller
 - Direct control over data plane
- Plenty of room for bugs
 - Still a complex, distributed system
- Need for testing techniques
 - Controller applications
 - Controller and switches
 - Rules installed in the switches

Conclusion

- Rethinking networking
 - Open interfaces to the data plane
 - Separation of control and data
 - Leveraging techniques from distributed systems
- Significant momentum
 - In both research and industry
- Next time
 - Closing lecture
 - No precept this week