

Mobile Data Tsunami Challenges Current Cellular Technologies

- Global growth 18 times from 2011 to 2016
- AT&T network:
 - Over the past five years, wireless data traffic has grown 20,000%
 - At least doubling every year since 2007
- Existing cellular technologies are inadequate
 - Fundamental redesign of cellular networks is needed

Source: CISCO Visual Networking Index (VNI) Global Mobil Data Traffic Forecast 2011 to 2016

Outline

Goal of this lecture: understand the basics of current cellular networks

- Physical Layer
- Access Procedure
 - Why no carrier sensing
- •Connection Setup
- Mobility Management
- •Power Management and Mobile Apps
- •Differences between 3G and LTE
- •What is Next
- •Conclusion

Physical Layer: UMTS

Code Division Multiple Access (CDMA)

- Use of orthogonal codes to separate different transmissions
- Each symbol or bit is transmitted as a larger number of bits using the user specific code Spreading
- Spread spectrum technology
 - The bandwidth occupied by the signal is much larger than the information transmission rate
 - Example: 9.6 Kbps voice is transmitted over 1.25
 MHz of bandwidth, a bandwidth expansion of ~100

Physical Layer LTE vs WiFi

- Speed: LTE is designed to operate with a maximum mobile speed of 350km
 - Shorter channel coherence time, more frequent pilot transmissions
- Coverage: several kilometers
 - Larger delay spread, more guard time overhead

Why Power Consumptions of RRC States so different?

- IDLE: procedures based on reception rather than transmission
 - Reception of System Information messages
 - Cell selection registration (requires RRC connection establishment)
 - Reception of paging messages with a DRX cycle (may trigger RRC connection establishment)
 - Location and routing area updates (requires RRC connection establishment)

UMTS RRC State Machine (Cont'd)

- CELL_FACH: need to continuously receive (search for UE identity in messages on FACH), data can be sent by RNC any time
 - Can transfer small data
 - UE and network resource required low
 - Cell re-selections when a UE moves
 - Inter-system and inter-frequency handoff possible
 - Can receive paging messages without a DRX cycle

6

UMTS RRC State Machine (Cont'd)

- CELL_DCH: need to continuously receive, and sent whenever there is data
 - Possible to transfer large quantities of uplink and downlink data
 - UE and network resource requirement is relatively high
 - Soft handover possible for dedicated channels and Inter-system and inter-frequency handover possible
 - Paging messages without a DRX cycle are used for paging purposes

LTE vs UMTS (3G): Physical Layer

- UMTS has CELL_FACH
 - Uplink un-synchronized
 - Base station separates random access transmissions and scheduled transmissions using CDMA codes
- LTE does not have CELL FACH
 - Uplink needs synchronization
 - Random access transmissions will interfere with scheduled transmissions

What Is Next?

What Is Next?

- LTE Evolution
- Dynamic Spectrum Sharing
- Base Station with Large Number of Antennas
- Software Defined Cellular Networks

LTE-A – meeting and exceeding IMT-Advanced requirements - Carrier aggregation - Enhanced multi-antenna support - Relaying - Enhancements for heterogeneous deployn LTE-B Rel-12 Rel-12 Rel-13

LTE-B - Work starting fall 2012 • Topics (speculative) - Device-to-device communication - Enhancements for machine-to-machine communication - Green networking: reduce energy use - And more... LTE-A Rai-10 Rai-10

Base Station with Large Number of Antennas (Cont'd) • Prototype front view Antennas

A Clean-Slate Design: Software-Defined Cellular Networks

CellSDN Architecture

- CellSDN provides scalable, fine-grain real time control with extensions:
 - Controller: fine-grain policies on subscriber attributes
 - Switch software: local control agents to improve control plane scalability
 - Base stations: remote control and virtualization to enable flexible *real time* radio resource management

Conclusions

- LTE promises hundreds of Mbps and 10s msec latency
- Mobile apps need to be cellular friendly, e.g. avoid periodic small packets, use push notification services
- · Roaming and inter-technology handoff not covered
- Challenges
 - P-GW central point of control, bad for content distribution, and scalable policy enforcement
 - Mobile video will be more than half of the traffic
 - Needs lots of spectrum (spectrum crunch)