Content Distribution Networks (CDNs)

Mike Freedman
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr13/cos461/

Second Half of the Course

- Application case studies
 - Content distribution, peer-to-peer systems and distributed hash tables (DHTs), and overlay networks

- Network case studies
 - Enterprise, wireless, cellular, datacenter, and backbone networks; software-defined networking

- Network security
 - Securing communication protocols
 - Interdomain routing security

Single Server, Poor Performance

- Single server
 - Single point of failure
 - Easily overloaded
 - Far from most clients

- Popular content
 - Popular site
 - “Flash crowd” (aka “Slashdot effect”)}
 - Denial of Service attack

Skewed Popularity of Web Traffic

“Zipf” or “power-law” distribution

Characteristics of WWW Client-based Traces
Carlos R. Cunha, Azer Bestavros, Mark E. Crovella, BU-CS-95-01
Web Caching

Forward Proxy
- Cache “close” to the client
 - Under administrative control of client-side AS
- Explicit proxy
 - Requires configuring browser
- Implicit proxy
 - Service provider deploys an “on path” proxy
 - ... that intercepts and handles Web requests

Reverse Proxy
- Cache “close” to server
 - Either by proxy run by server or in third-party content distribution network (CDN)
- Directing clients to the proxy
 - Map the site name to the IP address of the proxy
Proxy Caches

(A) Forward (B) Reverse (C) Both (D) Neither

- Reactively replicates popular content (C)
- Reduces origin server costs (C)
- Reduces client ISP costs (A)
- Intelligent load balancing between origin servers (B)
- Offload form submissions (POSTs) and user auth (D)
- Content reassembly, transcoding on behalf of origin (C)
- Smaller round-trip times to clients (C)
- Maintain persistent connections to avoid TCP setup delay (handshake, slow start) (C)

Limitations of Web Caching

- Much content is not cacheable
 - Dynamic data: stock prices, scores, web cams
 - CGI scripts: results depend on parameters
 - Cookies: results may depend on passed data
 - SSL: encrypted data is not cacheable
 - Analytics: owner wants to measure hits

- Stale data
 - Or, overhead of refreshing the cached data
Modern HTTP Video-on-Demand

- Download “content manifest” from origin server
- List of video segments belonging to video
 - Each segment 1-2 seconds in length
 - Client can know time offset associated with each
 - Standard naming for different video resolutions and formats:
 e.g., 320dpi, 720dpi, 1040dpi, ...
- Client downloads video segment (at certain resolution) using standard HTTP request.
 - HTTP request can be satisfied by cache: it’s a static object
- Client observes download time vs. segment duration, increases/decreases resolution if appropriate

Content Distribution Networks

- Proactive content replication
 - Content provider (e.g., CNN) contracts with a CDN
- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Updates pushed to replicas when the content changes

Server Selection Policy

- Live server
 - For availability
- Lowest load
 - To balance load across the servers
- Closest
 - Nearest geographically, or in round-trip time
- Best performance
 - Throughput, latency, ...
- Cheapest bandwidth, electricity, ...

Requires continuous monitoring of liveness, load, and performance
Server Selection Mechanism

- **Application**
 - HTTP redirection

- **Advantages**
 - Fine-grain control
 - Selection based on client IP address

- **Disadvantages**
 - Extra round-trips for TCP connection to server
 - Overhead on the server

Server Selection Mechanism

- **Routing**
 - Anycast routing

- **Advantages**
 - No extra round trips
 - Route to nearby server

- **Disadvantages**
 - Does not consider network or server load
 - Different packets may go to different servers
 - Used only for simple request-response apps

Server Selection Mechanism

- **Naming**
 - DNS-based server selection

- **Advantages**
 - Avoid TCP set-up delay
 - DNS caching reduces overhead
 - Relatively fine control

- **Disadvantage**
 - Based on IP address of local DNS server
 - "Hidden load" effect
 - DNS TTL limits adaptation

How Akamai Works
Akamai Statistics

- Distributed servers
 - Servers: ~100,000
 - Networks: ~1,000
 - Countries: ~70

- Many customers
 - Apple, BBC, FOX, GM, IBM, MTV, NASA, NBC, NFL, NPR, Puma, Red Bull, Rutgers, SAP, ...

- Client requests
 - Hundreds of billions per day
 - Half in the top 45 networks
 - 15-20% of all Web traffic worldwide

How Akamai Uses DNS

1. DNS lookup
2. cache.cnn.com
3. g.akamai.net
4. ALIAS: g.akamai.net
5. Nearby Akamai cluster
6. End user
Mapping System

- Equivalence classes of IP addresses
 - IP addresses experiencing similar performance
 - Quantify how well they connect to each other

- Collect and combine measurements
 - Ping, traceroute, BGP routes, server logs
 - E.g., over 100 TB of logs per days
 - Network latency, loss, and connectivity

Adapting to Failures

- Failing hard drive on a server
 - Suspends after finishing “in progress” requests

- Failed server
 - Another server takes over for the IP address
 - Low-level map updated quickly

- Failed cluster
 - High-level map updated quickly

- Failed path to customer’s origin server
 - Route packets through an intermediate node
Akamai Transport Optimizations

- Bad Internet routes
 - Overlay routing through an intermediate server
- Packet loss
 - Sending redundant data over multiple paths
- TCP connection set-up/teardown
 - Pools of persistent connections
- TCP congestion window and round-trip time
 - Estimates based on network latency measurements

Akamai Application Optimizations

- Slow download of embedded objects
 - Prefetch when HTML page is requested
- Large objects
 - Content compression
- Slow applications
 - Moving applications to edge servers
 - E.g., content aggregation and transformation
 - E.g., static databases (e.g., product catalogs)

Conclusion

- Content distribution is hard
 - Many, diverse, changing objects
 - Clients distributed all over the world
 - Reducing latency is king
- Contribution distribution solutions
 - Reactive caching
 - Proactive content distribution networks