Middleboxes and Tunneling

Mike Freedman
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101
http://www.cs.princeton.edu/courses/archive/spr13/cos461/

Internet Ideal: Simple Network Model

- Globally unique identifiers
 - Each node has a unique, fixed IP address
 - ... reachable from everyone and everywhere
- Simple packet forwarding
 - Network nodes simply forward packets
 - ... rather than modifying or filtering them

Internet Reality

- Host mobility
 - Host changing address as it moves
- IP address depletion
 - Multiple hosts using the same address
- Security concerns
 - Detecting and blocking unwanted traffic
- Replicated services
 - Load balancing over server replicas
- Performance concerns
 - Allocating bandwidth, caching content, ...
- Incremental deployment
 - New technology deployed in stages

Middleboxes

- Middleboxes are intermediaries
 - Interposed between communicating hosts
 - Often without knowledge of one or both parties
- Myriad uses
 - Address translators
 - Firewalls
 - Traffic shapers
 - Intrusion detection
 - Transparent proxies
 - Application accelerators

“An abomination!”
- Violation of layering
- Hard to reason about
- Responsible for subtle bugs

“A practical necessity!”
- Solve real/pressing problems
- Needs not likely to go away

Firewalls

- Firewall filters packet-by-packet, based on:
 - Source and destination IP addresses and port #’s
 - TCP SYN and ACK bits; ICMP message type
 - Deep packet inspection on packet contents (DPI)
Packet Filtering Examples

- Block all packets with IP protocol field = 17 and with either source or dest port = 23.
 - All incoming and outgoing UDP flows blocked
 - All Telnet connections are blocked
- Block inbound TCP packets with SYN but no ACK
 - Prevents external clients from making TCP connections with internal clients
 - But allows internal clients to connect to outside
- Block all packets with TCP port of Quake

Firewall Configuration

- Firewall applies a set of rules to each packet
 - To decide whether to permit or deny the packet
- Each rule is a test on the packet
 - Comparing headers, deciding whether to allow/deny
- Order matters
 - Once packet matches a rule, the decision is done

Firewall Configuration Example

- Alice runs a network in 222.22.0.0/16
- Wants to let Bob's school access certain hosts
 - Bob is on 111.11.0.0/16
 - Alice's special hosts on 222.22.22.0/24
- Alice doesn't trust Trudy, inside Bob's network
 - Trudy is on 111.11.11.0/24
- Alice doesn't want any other Internet traffic

Firewall Configuration Rules

1. Allow Bob's network in to special destinations
 - Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)
2. Block Trudy's machines
 - Deny (src = 111.11.11.0/24, dst = 222.22.22.0/24)
3. Block world
 - Deny (src = 0.0.0.0/0, dst = 0.0.0.0/0)

Order?

- (A) 3, 1
- (B) 3, 1, 2
- (C) 1, 3
- (D) 1, 2, 3
- (E) 2, 1, 3

Stateful Firewall

- Stateless firewall:
 - Treats each packet independently
- Stateful firewall
 - Remembers connection-level information
 - E.g., client initiating connection with a server
 - ... allows the server to send return traffic

A Variation: Traffic Management

- Permit vs. deny is too binary a decision
 - Classify traffic using rules, handle classes differently
- Traffic shaping (rate limiting)
 - Limit the amount of bandwidth for certain traffic
- Separate queues
 - Use rules to group related packets
 - And then do weighted fair scheduling across groups
Clever Users Subvert Firewalls

- Example: filtering dorm access to a server
 - Firewall rule based on IP addresses of dorms
 - ... and the server IP address and port number
 - Problem: users may log in to another machine

- Example: filtering P2P based on port #
 - Firewall rule based on TCP/UDP port numbers
 - E.g., allow only port 80 (e.g., Web) traffic
 - Problem: software using non-traditional ports
 - E.g., write P2P client to use port 80 instead

History of NATs

- IP address space depletion
 - Clear in early 90s that 2^{32} addresses not enough
 - Work began on a successor to IPv4

- In the meantime...
 - Share addresses among numerous devices
 - ... without requiring changes to existing hosts

- Meant as a short-term remedy
 - Now: NAT is widely deployed, much more than IPv6

Port-Translating NAT

- Two hosts communicate with same destination
 - Destination needs to differentiate the two

- Map outgoing packets
 - Change source address and source port

- Maintain a translation table
 - Map of (src addr, port #) to (NAT addr, new port #)

- Map incoming packets
 - Map the destination address/port to the local host

Network Address Translation

Example:

<table>
<thead>
<tr>
<th>NAT translation table</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN side addr</td>
</tr>
<tr>
<td>138.76.29.7, 5001</td>
</tr>
</tbody>
</table>

Problem: Local address not globally addressable

- Make "inside" look like single IP addr
- Change header checksums accordingly

Network Address Translation Example

S: 128.119.40.186, 80
D: 138.76.29.7
1

S: 138.76.29.7, 5001
D: 128.119.40.186, 80
2

S: 128.119.40.186, 80
D: 138.76.29.7, 5001
3

NAT rewrites the IP addresses

Outbound: Rewrite src IP addr

Inbound: Rewrite dest IP addr

Problem: Local address not globally addressable

10.0.0.1

10.0.0.2

WAN side

LAN side

138.76.29.7

10.0.0.1, 3345
Maintaining the Mapping Table

- Create an entry upon seeing an outgoing packet
 - Packet with new (source addr, source port) pair
- Eventually, need to delete entries to free up #’s
 - When? If no packets arrive before a timeout
 - (At risk of disrupting a temporarily idle connection)
- Yet another example of “soft state”
 - I.e., removing state if not refreshed for a while

Where is NAT Implemented?

- Home router (e.g., Linksys box)
 - Integrates router, DHCP server, NAT, etc.
 - Use single IP address from the service provider
- Campus or corporate network
 - NAT at the connection to the Internet
 - Share a collection of public IP addresses
 - Avoid complexity of renumbering hosts/routers when changing ISP (w/ provider-allocated IP prefix)

Practical Objections Against NAT

- Port #s are meant to identify sockets
 - Yet, NAT uses them to identify end hosts
 - Makes it hard to run a server behind a NAT

Principled Objections Against NAT

- Routers are not supposed to look at port #s
 - Network layer should care only about IP #s
 - … and not be looking at the port numbers at all
- NAT violates the end-to-end argument
 - Network nodes should not modify the packets
- IPv6 is a cleaner solution
 - Better to migrate than to limp along with a hack

That’s what happens when network puts power in hands of end users!

Load Balancers

Replicated Servers

- One site, many servers
 - www.youtube.com
Load Balancer

- Splits load over server replicas
 - At the connection level

 Virtual IP address
 12.1.11.3

- Apply load balancing policies

Wide-Area Accelerators

At Connection Point to the Internet

- Improve end-to-end performance
 - Through buffering, compression, caching, ...
- Incrementally deployable
 - No changes to end hosts or the rest of the Internet

Example: Improve TCP Throughput

- Appliance with a lot of local memory
- Sends ACK packets quickly to the sender
- Overwrites receive window with a large value
- Or, even run a new and improved version of TCP

Example: Compression

- Compress the packet
- Send the compressed packet
- Uncompress at the other end
- Maybe compress across successive packets

Example: Caching

- Cache copies of the outgoing packets
- Check for sequences of bytes that match past data
- Just send a pointer to the past data
- And have the receiving appliance reconstruct
Example: Encryption

- Two sites share keys for encrypting traffic
- Sending appliance encrypts the data
- Receiving appliance decrypts the data
- Protects the sites from snoopers on the Internet

Tunneling

IP Tunneling

- IP tunnel is a virtual point-to-point link
 - Illusion of a direct link between two nodes

- Encapsulation of the packet inside IP datagram
 - Node B sends a packet to node E
 - ... containing another packet as the payload

6Bone: Deploying IPv6 over IP4

Remote Access Virtual Private Network

- Tunnel from user machine to VPN server
 - A “link” across the Internet to the local network
- Encapsulates packets to/from the user
 - Packet from 12.1.1.73 to 12.1.1.100
 - Inside a packet from 1.2.3.4 to 12.1.1.1

Conclusions

- Middleboxes address important problems
 - Getting by with fewer IP addresses
 - Blocking unwanted traffic
 - Making fair use of network resources
 - Improving end-to-end performance

- Middleboxes cause problems of their own
 - No longer globally unique IP addresses
 - Cannot assume network simply delivers packets