

Routing Convergence

Mike Freedman

COS 461: Computer Networks

Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr13/cos461/

Routing Changes Topology changes: new route to the same place Host mobility: route to a different place

Topology Changes

3

Two Types of Topology Changes

- Planned
 - Maintenance: shut down a node or link
 - Energy savings: shut down a node or link
 - Traffic engineering: change routing configuration
- Unplanned Failures
 - Fiber cut,
 faulty equipment,
 power outage,
 software bugs, ...

Detecting Topology Changes

- Beaconing
 - Periodic "hello" messages in both directions
 - Detect a failure after a few missed "hellos"

- Performance trade-offs
 - Detection delay
 - Overhead on link bandwidth and CPU
 - Likelihood of false detection

Routing Convergence: Link-State Routing

Convergence

- Control plane
 - All nodes have consistent information
- · Data plane
 - All nodes forward packets in a consistent way

Transient Disruptions

- · Detection delay
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a "blackhole"
 - Depends on timeout for detecting lost hellos

•

Transient Disruptions

- · Inconsistent link-state database
 - Some routers know about failure before others
 - Inconsistent paths cause transient forwarding loops

Convergence Delay

- · Sources of convergence delay
 - Detection latency
 - Updating control-plane information
 - Computing and install new forwarding tables
- Performance during convergence period
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination
- · Very bad for VoIP, online gaming, and video

10

Reducing Convergence Delay

- Faster detection
 - Smaller hello timers, better link-layer technologies
- · Faster control plane
 - Flooding immediately
 - Sending routing messages with high-priority
- Faster computation
 - Faster processors, and incremental computation
- Faster forwarding-table update
 - Data structures supporting incremental updates

Slow Convergence in Distance-Vector Routing

Redefining Infinity

- · Avoid "counting to infinity"
 - By making "infinity" smaller!
- Routing Information Protocol (RIP)
 - All links have cost 1
 - Valid path distances of 1 through 15
 - ... with 16 representing infinity
- Used mainly in small networks

Reducing Convergence Time With Path-Vector Routing (e.g., Border Gateway Protocol)

Path-Vector Routing

- · Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection Node can easily detect a loop Look for its own node identifier in the path E.g., node 1 sees itself in the path "3, 2, 1" Node can simply discard paths with loops E.g., node 1 simply discards the advertisement "d: path (2,1)" "d: path (3,2,1)"

Path vector avoids count-to-infinity But, ASes still must explore many alternate paths to find highest-ranked available path Fortunately, in practice Most popular destinations have stable BGP routes Most instability lies in a few unpopular destinations Still, lower BGP convergence delay is a goal Can be tens of seconds to tens of minutes

BGP Instability

Avoiding BGP Instability

- Detecting conflicting policies
 - Computationally expensive
 - Requires too much cooperation
- Detecting oscillations
 - Observing the repetitive BGP routing messages
- · Restricted routing policies and topologies
 - Policies based on business relationships

32

AS (Autonomous System)
Business Relationships

33

Customer-Provider Relationship Customer pays provider for access to Internet Provider exports its customer routes to everybody Customer exports provider routes only to its customers Traffic to customer Traffic from customer d provider customer customer

Peer-Peer Relationship

- Peers exchange traffic between their customers
 - AS exports only customer routes to a peer
 - AS exports a peer's routes only to its customers

Traffic to/from the peer and its customers

Hierarchical AS Relationships

- Provider-customer graph is directed and acyclic
 - If u is a customer of v and v is a customer of w
 - ... then w is not a customer of u

Local Control, Global Stability: "Gao-Rexford Conditions"

- 1. Route export
 - Don't export routes learned from a peer or provider to another peer or provider
- 2. Global topology
 - Provider-customer relationship graph is acyclic
 - E.g., my customer's customer is not my provider
- 3. Route selection
 - Prefer routes through customers over routes through peers and providers
- Guaranteed to converge to unique, stable solution

40

Conclusion

- The only constant is change
 - Planned topology and configuration changes
 - Unplanned failure and recovery
- Routing-protocol convergence
 - Transient period of disagreement
 - Blackholes, loops, and out-of-order packets
- · Routing instability
 - Permanent conflicts in routing policy
 - Leading to bi-stability or oscillation