

Best-Effort Global Packet Delivery

2

Circuit Switching (e.g., Phone Network) • Source establishes connection - Reserve resources along hops in the path • Source sends data - Transmit data over the established connection • Source tears down connection - Free the resources for future connections

Circuit Switching: Static Allocation

Q: Frequency-Division vs. Time-Division

time

time

Packet Switching

- Message divided into packets
 - Header identifies the destination address
- Packets travel separately through the network
 - Forwarding based on the destination address
 - Packets may be buffered temporarily
- Destination reconstructs the message

Packet Switching: Statistical (Time Division) Multiplexing

- Intuition: Traffic by computer end-points is bursty!
- Versus: Telephone traffic not bursty (e.g., constant 56 kbps)
- Nodes differ in network demand
 - Peak data rate and duty cycle (time spent sending/receiving)
 - One can use network while others idle
- Packet queuing in network: tradeoff space for time
 - Handle short periods when outgoing link demand > link speed

Best Effort: Celebrating Simplicity

- · Packets may be lost, corrupted, reordered
- · Never having to say you're sorry...
 - Don't reserve bandwidth and memory
 - Don't do error detection and correction
 - Don't remember from one packet to next
- Easier to survive failures
 - Transient disruptions are okay during failover
- Easier to support on many kinds of links
 - Important for *inter*connecting different networks

Best-Effort: Good Enough?

- Packet loss and delay
 - Sender can resend
- Packet corruption
 - Receiver can detect, and sender can resend
- · Out-of-order delivery
 - Receiver can put the data back in order
- · Packets follow different paths
 - Doesn't matter
- Network failure
 - Drop the packet
- · Network congestion
 - Drop the packet

Q: Packet vs. Circuit Switching?

- · Predictable performance
- · Network never blocks senders
- · Reliable, in-order delivery
- · Low delay to send data
- · Simple forwarding
- · No overhead for packet headers
- · High utilization under most workloads
- No per-connection network state

Packet vs. Circuit Switching

· Predictable performance Circuit

Network never blocks senders **Packet**

· Reliable, in-order delivery Circuit

· Low delay to send data **Packet** Circuit

· Simple forwarding

· No overhead for packet headers Circuit · High utilization under most workloads **Packet**

• No per-connection network state **Packet**

Network Addresses

Grouping Related Hosts • The Internet is an "inter-network" — Used to connect networks together, not hosts — Need to address a network (i.e., group of hosts) host host host host host host host wan outer LAN = Local Area Network WAN = Wide Area Network

Hierarchical Addressing in U.S. Mail • Addressing in the U.S. mail - Zip code: 08540 - Building: 35 Olden Street - Room in building: 308 - Name of occupant: Mike Freedman • Forwarding the U.S. mail - Deliver to the post office in the zip code - Assign to mailman covering the building - Drop letter into mailbox for building/room - Give letter to the appropriate person

History of IP Address Allocation

Classful Addressing

- In the olden days, only fixed allocation sizes
 - Class A: 0*
 - Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
 - Class B: 10*
 - Large /16 blocks (e.g., Princeton has 128.112.0.0/16)
 - Class C: 110*
 - Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
 - Class D: 1110* for multicast groups
 - Class E: 11110* reserved for future use
- This is why folks use dotted-quad notation!

Δ

Hierarchical Address Allocation · Hierarchy is key to scalability - Address allocated in contiguous chunks (prefixes) - Today, the Internet has about 400,000 prefixes 12.0.0.0/16 12.1.0.0/16 12.2.0.0/16 12.3.0.0/16 12.0.0.0/8 12.3.254.0/24 12.253.0.0/19 12.253.32.0/19 12.254.0.0/16 12.253.160.0/19

Obtaining a Block of Addresses

- Internet Corporation for Assigned Names and Numbers (ICANN)
 - Allocates large blocks to Regional Internet Registries
- · Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates to ISPs and large institutions
- Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

Hop-by-Hop Packet Forwarding

- Each router has a forwarding table
 - Maps destination address to outgoing interface
- · Upon receiving a packet
 - Inspect the destination address in the header
 - Index into the table
 - Determine the outgoing interface
 - Forward the packet out that interface
- Then, the next router in the path repeats

33

Separate Forwarding Entry Per Prefix • Prefix-based forwarding — Map the destination address to matching prefix — Forward to the outgoing interface 1.2,3,4 1.2,3,7 1.2,3,156 — S.6,7,8 5.6,7,9 5.6,7,212 — LAN —

CIDR Makes Packet Forwarding Harder • Forwarding table may have many matches - E.g., entries for 201.10.0.0/21 and 201.10.6.0/23 - The IP address 201.10.6.17 would match both! 201.10.0.0/21 Provider 2 201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Creating a Forwarding Table

- · Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to Serial0/0.1"
- · But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
- That is where the control plane comes in
 - Routing protocols

Data, Control, & Management Planes Data Control Management Time-Event Human Packet (ns) (10 ms to sec) scale (min to hours) Forwarding, Routing, Analysis, buffering, **Tasks** filtering, signaling configuration scheduling Line-card Router Humans or Location hardware software scripts

Q's: MAC vs. IP Addressing

- · Hierarchically allocated
 - A) MAC B) IP C) Both
- D) Neither
- · Organized topologically
 - A) MAC B) IP
- D) Neither
- C) Both
 - A) MAC B) IP
- Forwarding via exact match on address C) Both D) Neither
- Automatically calculate forwarding by observing data A) Ethernet switches B) IP routers C) Both D) Neither
- · Per connection state in the network
 - A) MAC B) IP C) Both D) Neither
- · Per host state in the network
 - A) MAC
- B) IP
- C) Both
- D) Neither

Q's: MAC vs. IP Addressing

- · Hierarchically allocated
 - A) MAC B) IP
- C) Both
- D) Neither
- Organized topologically
 - A) MAC B) IP
- C) Both D) Neither
- · Forwarding via exact match on address
 - A) MAC B) IP C) Both D) Neither
- Automatically calculate forwarding by observing data A) Ethernet switches B) IP routers C) Both D) Neither
- · Per connection state in the network
 - A) MAC B) IP C) Both D) Neither
- Per host state in the network
 - A) MAC B) IP
- C) Both
- D) Neither

IP Packet Format

| 4-bit | 4-bit | Type of Service | 16-bit Total Length (Bytes) | 16-bit Identification | 3-bit | 13-bit Flags | 13-bit Header Checksum | 32-bit Source IP Address | 32-bit Destination IP Address | Options (if any) |

Conclusion

- · Best-effort global packet delivery
 - Simple end-to-end abstraction
 - Enables higher-level abstractions on top
 - Doesn't rely on much from the links below
- · IP addressing and forwarding
 - Hierarchy for scalability and decentralized control
 - Allocation of IP prefixes
 - Longest prefix match forwarding
- Next time: transport layer

45

Backup Slides

46

IP Header: Version, Length, ToS

- Version number (4 bits)
 - Necessary to know what other fields to expect
 - Typically "4" (for IPv4), and sometimes "6" (for IPv6)
- Header length (4 bits)
 - Number of 32-bit words in the header
 - Typically "5" (for a 20-byte IPv4 header)
 - Can be more when "IP options" are used
- Type-of-Service (8 bits)
 - Allow different packets to be treated differently
 - Low delay for audio, high bandwidth for bulk transfer

IP Header: Length, Fragments, TTL

- Total length (16 bits)
 - Number of bytes in the packet
 - Max size is 63,535 bytes (216 -1)
 - ... though most links impose smaller limits
- Fragmentation information (32 bits)
 - Supports dividing a large IP packet into fragments
 - ... in case a link cannot handle a large IP packet
- Time-To-Live (8 bits)
 - Used to identify packets stuck in forwarding loops
 - ... and eventually discard them from the network

- Protocol (8 bits)
 - Identifies the higher-level protocol
 - E.g., "6" for the Transmission Control Protocol (TCP)
 - E.g., "17" for the User Datagram Protocol (UDP)
 - Important for demultiplexing at receiving host
 - Indicates what kind of header to expect next

IP Header: Header Checksum

- Checksum (16 bits)
 - Sum of all 16-bit words in the header
 - If header bits are corrupted, checksum won't match
 - Receiving discards corrupted packets

IP Header: To and From Addresses

- Destination IP address (32 bits)
 - Unique identifier for the receiving host
 - Allows each node to make forwarding decisions
- Source IP address (32 bits)
 - Unique identifier for the sending host
 - Recipient can decide whether to accept packet
 - Enables recipient to send a reply back to source

51