
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

‣ 2-3 search trees

‣ red-black BST introduction

‣ red-black BST insert

‣ B-trees

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BST introduction

‣ red-black BST insert

‣ B-trees

3.3 BALANCED SEARCH TREES

3

Symbol table review

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average case

(after N random inserts)

average case

(after N random inserts)

average case

(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

goal log N log N log N log N log N log N yes compareTo()

2-3 Trees (Turbo Edition)

4

A C SH

E R

Search for M

M

2-3 Trees (Turbo Edition)

5

A C SH

E R

Search for M

・Go middle

M

2-3 Trees (Turbo Edition)

6

A C SH

E R

Search for M

・Go middle

・Go right

M

2-3 Trees (Turbo Edition)

7

A C SH

E R

Search for M

・Go middle

・Go right

– null

M

2-3 Trees (Turbo Edition)

8

A C SH

E R

Insert M (into 2-node)

・M is bigger than H, and H.right is null.

・M joins H.

– Important: Never create new nodes at the bottom!

A C S

E R

H M

M

2-3 Trees (Turbo Edition)

9

Insert H (into 3-node)

・H joins.

・[VIOLATION] 4 node created.

– Send R to its parent.

– Create two new 2-nodes from the debris.

・Important: Other than empty tree, only way to make new nodes.

E

SRA C

E

A C SRH

A C SH

E R

H

2-3 Trees (Turbo Edition)

10

Insert L (into 3-node with 3-node parent)

・[VIOLATION] HLP created.

S XA C

E R

H P S XA C

E R

H PL
L

2-3 Trees (Turbo Edition)

11

Insert L (into 3-node with 3-node parent)

・[VIOLATION] HLP created. Send L up, create H and P.

・[VIOLATION] ELR created.

S XA C

E R

H P S XA C PH

E RL

L

2-3 Trees (Turbo Edition)

12

Insert L (into 3-node with 3-node parent)

・[VIOLATION] HLP created. Send L up, create H and P.

・[VIOLATION] ELR created.

・Send L to join parent (no parent, so new root)

– Create two new 2-nodes E-R from the debris.

– Each gets custody of two nodes.

・Important: Only way to increase tree height is by splitting the root.

S XA C

E R

H P S XA C PH

E RL

S XA C PH

E R

L

L

2-3 Tree Construction

Your turn.

・Insert B, I, M. Which tree do you get?

13

Which is the correct 2-3 tree?

B

MI

I

MB

[751394] [751395]

pollEv.com/jhug text to 37607

2-3 Tree Construction

One more.

・Insert B, I, M, D, G. Which tree do you get?

14

Which is the correct 2-3 tree?

M

D I

B G M

D I

B G

[751422] [751425]

pollEv.com/jhug text to 37607

Those Three Important Things Again

2-3 Tree

・Insert adds new keys into a leaf node instead of creating a new node at

the bottom.

・New nodes only created when a 4-node is split.

・Height of tree only increases when root is split.

Stuff them til’ they pop.

15

Invariants. Maintains symmetric order and perfect balance.

Pf. Adding a key to a leaf maintains symmetric order and perfect balance.

 Splitting maintains symmetric order and perfect balance.

16

Global properties in a 2-3 tree

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

E SS

Group problems (groups of 3)

Which are valid 2-3 trees?

17

GHA B

C F

D E A C

E R

H A C

E R

H

Are all 2-3 trees the same height for the same set of keys?

・If so: Why?

・If not: Give a counter example.

Bonus Questions

・Given N keys, describe a worst-case input sequence (greatest height).

・Given N keys, describe a best-case input sequence (smallest height).

Group problems (groups of 3)

Perfect Balance

・Only leftmost tree achieves perfect balance.

・Perfect balance: Same number of nodes along every path from root to

null.

18

Which are valid 2-3 trees?

A C

E R

H A C

E R

H

GHA B

C F

D E

Group problems (groups of 3)

19

Are all 2-3 trees the same height for the same set of keys?

・If so: Why?

・If not: Give a counter example.

A

B

C

D

E

F

GHA B

C F

D E
GH

Group problems (groups of 3)

20

Given N keys, describe a worst-case input sequence (greatest height).

・Worst case is all 2-nodes.

・Split as often as possible.

・Insert keys in ascending (or descending) order.

Given N keys, describe a best-case input sequence (smallest height).

・Best case is all 3-nodes.

・Split as infrequently as possible.

・???

Splitting a 4-node is a local transformation: constant number of operations.

Bottom line: Splitting does not affect time complexity of insert.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a 4-node is a local transformation that preserves balance

21

Performance: Local transformations in a 2-3 tree

22

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

・Worst case: lg N. [all 2-nodes]

・Best case: log3 N ≈ .631 lg N. [all 3-nodes]

・Between 12 and 20 for a million nodes.

・Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys

ST implementations: summary

23

constants depend upon implementation

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average case

(after N random inserts)

average case

(after N random inserts)

average case

(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BST introduction

‣ red-black BST insert

‣ B-trees

3.3 BALANCED SEARCH TREES

Hard to implement

・Multiple node types, 2-node, 3-node, 4-node

・Three children (leads to lots more cases)

Goal: Represent as binary tree

・Approach 1: Glue nodes.

– Wasted space, wasted link.

– Code probably messy.

・Approach 2: Build a regular BST.

– Cannot map from BST back to 2-3 tree.

– No way to tell a 3-node from a 2-node.

・Approach 3: BST with glue links.

– Used widely in practice.

– Arbitrary restriction: Red links lean left.

The problem with 2-3 trees

25

ER

Key property. 1–1 correspondence between 2–3 and LLRB.

26

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Not done. Need search, insert, and delete on an LLRB to mimic 2-3 trees.

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

27

public Val get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}

but runs faster

because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Red-black BST representation

Implementation Detail. Color is stored as a property of child node.

28

 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private class Node
 {
 Key key;
 Value val;
 Node left, right;
 boolean color; // color of parent link
 }

 private boolean isRed(Node x)
 {
 if (x == null) return false;
 return x.color == RED;
 }

null links are black

Other possibilities for storing color.

As property of parent node (since all red links lean left).

As properties of links to children (two variables per parent).

226 figures do not show node color!

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BST introduction

‣ red-black BST insert

‣ B-trees

3.3 BALANCED SEARCH TREES

Easy Case 1: Inserting to the left of a 2-node

Should we use a red or a black link in this case?

・Red link.

What about in other cases?

・Red link.

– Never create new nodes in a 2-3 tree except when splitting a 4 node.

– Every path to null must have the same number of black links.

30

E S

SS

E

S S

E

Easy Case 2: Inserting to the right of a 2-node

What is the problem here?

・Red links must lean left (by definition)

How do we fix the problem?

・Swap roles of S and E

– Can generalize role-swapping for non-leaf nodes as left rotation.

31

E S

E

S

E

E

E

S

Easy Case 2: Inserting to the right of a 2-node

What is the problem here?

・Red links must lean left (by definition)

How do we fix the problem?

・Swap roles of S and E

– Can generalize role-swapping for non-leaf nodes as left rotation.

– Usefulness of rotation will become clear.

32

S

E

E

S

S

E

E

S

Elementary red-black BST operations

33

greater

than S

x

h

S

between

E and S

less

than E

E

rotate E left
(before)

 private Node rotateLeft(Node h)
 {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

 Rotate E left: Promote E’s right child in the only sensible way.

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

 Rotate E left: Promote E’s right child in the only sensible way.

Invariants. Maintains symmetric order and perfect black balance.

34

greater

than S

less

than E

x

h E

between

E and S

S

rotate E left
(after)

 private Node rotateLeft(Node h)
 {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

 Rotate S right: Promote S’s left child in the only sensible way.

Invariants. Maintains symmetric order and perfect black balance.

35

rotate S right
(before)

greater

than S

less

than E

h

x E

between

E and S

S

 private Node rotateRight(Node h)
 {
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

 Rotate S right: Promote S’s left child in the only sensible way.

Invariants. Maintains symmetric order and perfect black balance.

36

 private Node rotateRight(Node h)
 {
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

rotate S right
(after)

greater

than S

h

x

S

between

E and S

less

than E

E

Mimicking 2-3 Trees

Three problem cases when inserting into 3-node.

・Two consecutive red left children.

・Red right child.

・Two red children (easier to think of as separate case).

37

E

F

A
A

F

E

A

E

FA

E
F +

A +
E

F

E + A

F

?

A E F

Case 1: Two red children

What is the problem here?

・Red links must lean left (by definition).

・[VIOLATION] 4 node.

How to Resolve?

・Color flip.

・Equivalent to splitting 4 node.

38

FA

E ?
A

E

F

?

A E

?

A E F

F +

A

E

FA

E
F +

Case 2: Consecutive red left children

What is the problem here?

・Two red children in a row.

・[VIOLATION] 4 node.

How to Resolve?

・Rotate F right (back to case 1: two red children).

39

E

F

A

A

E

F

?

A E F

A

E

F FA

E ?

Case 3: Red right child and black left child

What is the problem here?

・Red links must lean left (by definition)

・[VIOLATION] Weird sort of 4-node.

How to Resolve?

・Rotate A left. Either done or puts us right back into Case 2.

40

A

F

E

A E F

?

FA

? E

E

F

A A

E

FA

E

F

Summary: Mimicking 2-3 Trees

Three problem cases when inserting into 3-node.

・Two red children: Color flip

・Two consecutive red left children: Rotate right.

・Black left child, red right child: Rotate left.

41

E

F

A

A

F

E

?

A E F

A

E

F

Flip E.

Rotate F right.

Flip

Rotate A left.

Color Flipping Dangers

What happens if a color flip leads to a violation?

・Repeat operations to preserve LLRB properties.

42

D

E

F D

E

F

C

B
C

B
Color flip Left rotate C

What is the correct operation to fix the tree?

A. Colorflip(C) [189680] D. LeftRotate(E) [191780]
B. LeftRotate(C) [189961] E. RightRotate(E) [191856]
C. RightRotate(C) [190734]

pollEv.com/jhug text to 37607

Color Flipping Dangers

What happens if a color flip leads to a violation?

・Repeat operations to preserve LLRB properties.

43

D

E

F D

E

F

C

B
C

B
Color flip Left rotate C

What is the level order traversal after left rotating C?

A. CBEDF [389282] C. BCEDF [389284]
B. ECFBD [389283] D. CDEBF [389288]

pollEv.com/jhug text to 37607

Color Flipping Dangers

What happens if a color flip leads to a violation?

・Repeat operations to preserve LLRB properties.

44

D

E

F D

E

F

C

B
C

B C F

E

B D

Color flip Left rotate C

What is the level order traversal after left rotating C?

B. ECFBD [389283]

pollEv.com/jhug text to 37607

Group Problems

45

Groups of 3.

・What letters could possibly appear in the mystery node in the left tree?

・What color is the mystery node in the left tree?

・Give a very simple description of when we want to:

– Rotate left:

– Rotate right:

– Color flip:

・If we insert W in the right tree, how many of the following must we perform:

– Left rotation:

– Right rotation:

– Color flip:

Group Problems

46

What letters could possibly appear in the mystery node?

・Between G and L [H I J K]

What color is the mystery node?

・red ?

– NEED BALANCE

– FIND OUR CENTER

– LOOK TO THE HEAVENS

– The path must be height 2 - Buddha

Group Problems

47

Give a very simple description of when we want to:

・Rotate left: Right red child

・Rotate right: Two consecutive left red children

・Color flip: Two red children

How many left, right, flip:

Left: 1

Right: 1

FLip: 2

Insertion in a LLRB tree: Java implementation

Same code for all cases.

・Right child red, left child black: rotate left.

・Left child, left-left grandchild red: rotate right.

・Both children red: flip colors.

48

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else if (cmp == 0) h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);

 return h;
 }

insert at bottom

(and color it red)

split 4-node

balance 4-node

lean left

only a few extra lines of code provides near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h

Insertion in a LLRB tree: Java implementation

49

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else if (cmp == 0) h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);

 return h;
 }

insert at bottom

(and color it red)

split 4-node

balance 4-node

lean left

only a few extra lines of code provides near-perfect balance

Questions

・Why isRed(h) as opposed to h.isRed()?

・If h.left is null, will h.left.left throw an exception?

Why left-leaning trees?

50

 private Node put(Node x, Key key, Value val, boolean sw)
 {
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp < 0)
 {
 x.left = put(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotateRight(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotateRight(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else if (cmp > 0)
 {
 x.right = put(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotateLeft(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotateLeft(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 else x.val = val;
 return x;
 }

 public Node put(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, RED);
 int cmp = kery.compareTo(h.key);
 if (cmp < 0)
 h.left = put(h.left, key, val);
 else if (cmp > 0)
 h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left))
 h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left))
 h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right))
 flipColors(h);

 return h;
 }

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward

 (if you’ve paid attention)

Insertion in a LLRB tree: visualization

51

255 insertions in ascending order

52

Insertion in a LLRB tree: visualization

255 insertions in descending order

53

Insertion in a LLRB tree: visualization

255 random insertions

54

Balance in LLRB trees

Proposition. Height of tree is ≤ 2 lg N in the worst case.

Pf.

・Every path from root to null link has same number of black links.

・Never two red links in-a-row.

Property. Height of tree is ~ 1.00 lg N in typical applications.

ST implementations: summary

55

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average case

(after N random inserts)

average case

(after N random inserts)(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.00 lg N * 1.00 lg N * 1.00 lg N * yes compareTo()

* exact value of coefficient unknown but extremely close to 1

Logarithmic

Linear

・Billion items: 100 nanoseconds

・Trillion items: 0.1milliseconds

・10^100 items: Long past the Stelliferous Era

Just how fast is logarithmic?

・Billion items: 100 nanoseconds

・Trillion items: 125 nanoseconds

・10^100 items: 1 microsecond (if you had enough very tiny memory)

56

Can we do even better?

57

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average case

(after N random inserts)

average case

(after N random inserts)

average case

(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

separate chaining ?? ?? ?? Constant* Constant* Constant* no ??

* under a certain assumption

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 2-3 search trees

‣ red-black BST introduction

‣ red-black BST insert

‣ B-trees

3.3 BALANCED SEARCH TREES

59

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access

data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

slow fast

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

・At least 2 key-link pairs at root.

・At least M / 2 key-link pairs in other nodes.

・External nodes contain client keys.

・Internal nodes contain copies of keys to guide search.

60

B-trees (Bayer-McCreight, 1972)

choose M as large as possible so

that M links fit in a page, e.g., M = 1024

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes

・Start at root.

・Find interval for search key and take corresponding link.

・Search terminates in external node.

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)

61

Searching in a B-tree

・Search for new key.

・Insert at bottom.

・Split nodes with M key-link pairs on the way up the tree.

62

Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A

Proposition. A search or an insertion in a B-tree of order M with N keys

requires between log M-1 N and log M/2 N probes.

Pf. All internal nodes (besides root) have between M / 2 and M - 1 links.

In practice. Number of probes is at most 4.

Optimization. Always keep root page in memory.

63

Balance in B-tree

M = 1024; N = 62 billion

log M/2 N ≤ 4

64

Building a large B tree

full page splits into
two half -full pages

then a new key is added
to one of them

full page, about to split

white: unoccupied portion of page

black: occupied portion of page

each line shows the result
of inserting one key

in some page

Building a large B-tree

65

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

・Java: java.util.TreeMap, java.util.TreeSet.

・C++ STL: map, multimap, multiset.

・Linux kernel: completely fair scheduler, linux/rbtree.h.

・Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

・Windows: HPFS.

・Mac: HFS, HFS+.

・Linux: ReiserFS, XFS, Ext3FS, JFS.

66

Red-black BSTs in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black BSTs in the wild

67

