The Virtual Network System

Martin Casado
Department of Computer Science
Stanford University
Stanford, CA 94305-9030

casado@cs.stanford.edu

ABSTRACT

The goal of our work is to give students a hands-on expe-
rience designing, deploying and debugging parts of the In-
ternet infrastructure, such as an Internet router that routes
real network traffic, or a security firewall. To do so nor-
mally requires that the students have access to snoop and
generate raw network traffic, which is a risk to privacy and
security. And it normally requires each student to have a
dedicated computer, and to modify the kernel. The Virtual
Network System (VNS) is a teaching tool designed for un-
dergraduate and graduate networking courses. With VNS,
each student can build a router (or any packet-processing
device) in user-space, in their own private, protected topol-
ogy, and process real Internet traffic. VNS has been used
by over 500 students at Stanford and remotely from other
universities. This paper describes the VNS tool, and our
experiences using it in the classroom.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms

Measurement, Design, Experimentation

Keywords

Network Simulation, TCP, Internet Infrastructure, Router
Design, VNS

1. BACKGROUND

The typical undergraduate introductory networking class
includes programming assignments. A canonical first as-
signment gives students experience with API-level sockets
programming by implementing a simple web-client or ftp-
client. Further assignments typically build on the sockets
layer, and the students implement remote procedure calls,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

S GCSE' 05, February 23-27, 2005, St. Louis, Missouri, USA.

Copyright 2005 ACM 1-58113-997-7/11/0002 ...$5.00.

Nick McKeown
Department of Electrical Engineering
Stanford University
Stanford, CA 94305-9030

nickm@stanford.edu

network games, distributed file systems and other applica-
tions. Yet the sockets layer is quite a high level abstraction
of the underlying network, and sits on top of TCP, IP and
the link-layer. Projects at this level don’t provide students
with experience in packet re-transmission, congestion con-
trol, routing nor other concepts key to an introductory class.

To provide hands-on access with lower-level networking
concepts, the computer science education community has
developed a number of project environments to supplement
introductory networking courses [6, 7, 15, 8, 11, 16, 18, 10].
These reflect an oft-cited need for active learning environ-
ments in networking courses. Active learning in networks
gives students experience in the subtleties of the design of a
complex system, as well as prepare them for the networking
industry.

These environments are typically variants of the following:

o Infrastructure for implementation of transport level

protocols over a connection-less protocol such as UDP [15,

8].

e Virtual, simulation or emulation environments for de-
veloping simplified link layer or network layer proto-
cols [11, 9, 6, 2, 3].

e Administration and/or kernel level development of net-
work topologies of dedicated hardware or networked
virtual machines [14, 16, 18, 12, 17].

e Simplified access to link-layer network traffic for anal-
ysis [10]

At the introductory level however there is a lack of teach-
ing tools that allow students to develop and deploy Internet
infrastructure components such as routers that interact with
actual hardware on the Internet. Projects at the network
level and below are typically taught theoretically or using
special-purpose simulation environments. Simulation envi-
ronments often require the students to learn and use non-
standard scripting interfaces and libraries [9, 2] and are not
designed to provide real time access to the Internet. Larger
computer science programs may have labs with dedicated
hardware in which students can develop network functional-
ity at the kernel level [14, 17]. However, such environments
require extensive resources to setup and and manage and
are not suitable for introductory courses where the students
may not have sufficient systems development expertise.

Giving students experience below the sockets layer with
live traffic is quite difficult[5]. At the machine level, this

Figure 1: A simple VNS server setup with three
virtual topologies and three application servers

usually requires modifying the kernel, which requires a com-
puter per student, and a highly unstable development envi-
ronment. It also requires great care in the security of the
network. Most universities don’t allow students to snoop or
generate arbitrary raw IP packets on the campus network.
And even if it was possible for a student to implement a
router, it would be cumbersome to build a realistic topology
to test one or more instances.

In this paper we present an educational tool we developed
to support projects below the socket layer safely and using
few resources. The Virtual Network System (VNS) was de-
signed to allow hundreds of students working remotely (any-
where on the Internet) to develop user space programs that
function as network infrastructure components, which op-
erate on the actual Internet handling live, real-time traffic.
We have developed a number of programming assignments
using VNS that are suitable for undergraduate and gradu-
ate level courses. All course materials are publicly available.
Fundamental to the design of VNS is the ability to support
multiple remote classes working on different projects simul-
taneously. VNS is a production system currently being used
in a number of courses locally and remotely. It has been used
in undergraduate and graduate networking courses here at
Stanford and at Johns Hopkins to teach the implementa-
tion of routers and to support the development of functional
TCP compatible stacks that interact with other hosts on the
Internet.

2. THE VIRTUAL NETWORK SYSTEM

The core of VNS is a server daemon written in standard
C++ that can simulate multiple, virtual network topolo-
gies from a single host as shown in figure 1. Each virtual
topology is reachable from the Internet and can integrate
with actual hardware devices such as commodity PCs run-
ning common Internet services. The VNS server daemon
can support hundreds of users and topologies from a single
machine.

The VNS server accepts connections from VNS clients
which are user space programs that will operate as hosts on
the virtual topologies. Clients upon connecting can request
that the server forward them traffic as seen by a particular
host on a given topology. The client may then inspect, dis-
card, modify or inject new traffic into the network, giving it
the full capabilities of an actual host on the network.

Web Browser VNS Client

P P

Internet

Weh Server
S
Firew VNS Server

Figure 2: Web browser accessing a web server con-
nected to VNS

Interface A Interface BB
G .-"., _
A 1.‘
VNS Client Weh Server
(router)

Figure 3: View of virtual topology as seen by web
browser

We describe the operation of VNS using a simple example.
Figure 2 shows a physical network topology in which a web
browser application is trying to access a web server. The
VNS server provides a virtual topology such that the web
browser sees the network topology shown in figure 3.

In effect, the VNS server inserts the VNS client (the stu-
dent’s code) into the topology, even though the VNS client
is physically located somewhere else on the internet (Figure
2). The VNS server achieves this by receiving all packets
destined for interfaces A and B and passing them via a sep-
arate socket to the VNS client. The VNS client receives each
packet exactly as the router would have received it (as raw
Ethernet packets) and then determines what action, if any,
to take. For example, when the VNS client receives an http
(web) request packet on interface A, it will send the packet
back to the VNS server with instructions for the VNS server
to forward the packet out of interface B to the web server.

Security considerations regarding student access to low-
level network functionality are addressed in VNS by placing
a firewall with a stringent set of rules between the server
and the Internet. The firewall rules only pass valid TCP
and UDP packets without forged source addresses (egress
filtering). Gateway based rate limiting makes it hard to
implement client-initiated DOS style traffic patterns (e.g.
SYN floods; although we’ve yet to experience this type of
behaviour).

Projects using VNS typically involve writing a client to
perform a specific function on the network. We’ve devel-

oped simple libraries in C, C++ and Java to serve as the
base for clients. These libraries provide low level primitives
for interaction with the server such as reserving a host, read-
ing interface information about a particular host, reading a
packet from the network and injecting a packet back into the
network. All communications between the server and clients
are done via a proprietary protocol over a TCP connection.
Using a simple, user-level library to handle low level packet
access has the advantages of simplicity, portability and sim-
plified debugging. The libraries have the ability to create
peap [4] compatible packet trace files of all packets sent to
or received by the client for analysis standard tools such as
tepdump [4] or ethereal [1].

3. REPRESENTATIVE PROJECTS

VNS is a good candidate environment for any project re-
quiring low-level network access. While initially designed
to aid students in developing network infrastructure com-
ponents it is equally useful for demonstrating network con-
cepts such as TCP characteristics using real Internet traffic.
In this section we describe two assignments designed around
VNS and our current effort to create a visual demonstration
tool for use in class lectures and student lab environments.

3.1 Building an Internet Router with VNS

Here at Stanford VNS is used in the introductory network-
ing course to teach the implementation of Internet routers.
The assignment is structured around a simple topology con-
sisting of a router with three interfaces connected to two
application servers running standard Internet services such
as http and ftp. Each student is assigned their own private
topology and an IP range to allocate to the router’s inter-
faces. Using the VNS client library as a base, the students
develop fully functional routers. The routers must support
the following basic functionality:

e ARP query/response capability

o ARP cache with timeout

e IP header checksum calculation

e TTL decrement on forwarded packets

o generate ICMP TTL exceeded when necessary
e NEXT hop lookup in forwarding table

e response to ICMP echo request

e generate ICMP Port Unreach for TCP/UDP packets
destined to a local interface

A completed router will be able to route traffic from any-
where on the Internet to the connected Internet servers and
will respond correctly to ping and traceroute. During de-
velopment a student can test his or her router by using a
standard web or ftp client directed at one of the applica-
tion servers connected to their topology. Ambitious stu-
dents may wish to add support for advanced functionality
on their routers. Students have extended their routers to
support NAT, web servers and IP filtering.

3.2 ImplementingaFull TCP/IP Network Stack

VNS is used by students in our introductory networking
course to develop a TCP compliant transport layer called
STCP. While STCP can inter-operate with any standard
TCP implementation it consists of a subset of TCP func-
tionality leaving out more complex features such as conges-
tion control. Students begin the project by implementing
STCP over UDP, using UDP for the network layer. They
manage both sides of the TCP connection. When they be-
lieve they have working implementations, they migrate their
transport code to IP using VNS and test their implementa-
tions against standard TCP stacks anywhere on the Internet.
The VNS portion of the assignment is done using a simple
one host, one interface topology. Testing is done using an ftp
client they develop in their direct programming assignment.
Armed with an application and a transport layer, they can
transfer files from any ftp-server in the Internet.

There are a number of advantages to using an IP based,
TCP compatible transport layer. Students get to experi-
ence the subtleties of inter-operating with commodity TCP
stacks. Exposure to the IP layer is representative of real
world transport layer implementations which for example
may have to handle checksumming over the IP pseudo-header.
Students can extend their code to support standard TCP
features such as slow-start, dynamic window-resizing, and
the Karn-Partridge algorithm.

3.3 Clack : A GUI Router Builder

We also use VNS in the classroom to graphically demon-
strate network concepts. To this end, we developed Clack, a
Click-inspired, GUI VNS client written in Java [13]. Clack
is a graphical, component-based router builder that can be
used to demonstrate various router aspects using live Inter-
net traffic. It currently contains a working subset of Click’s
basic ipv4 router components and supports ARP handling,
IP header checks, IP forwarding, IP TTL decrement and ba-
sic ICMP handling and generation. Clack connects to the
VNS server just like any other VNS client and can route real
network traffic.

Clack is designed to visually illustrate network infrastruc-
ture concepts. For example, we show students in real-time
how the buffer in a router evolves with network congestion;
how performance changes if packets are dropped randomly
instead of from the tail of a queue; and what happens if the
router mis-sequences the packets. The client contains many
user-configurable components, such as a FIFO queue com-
ponent with configurable size and drop policy that displays
its occupancy in real time. The queue also has a graphing
feature which plots the absolute and average queue occu-
pancy over a period of time. This can be used to show the
TCP slow-start algorithm, or the saw-tooth of a TCP flow
in congestion avoidance.

Development on Clack is ongoing. We plan to develop a
set of loadable router configurations that can be used for
demonstrations during lectures and by students in a lab en-
vironment.

4. EXPERIENCESWITH VNSIN THE
CLASSROOM

VNS has become an integral part of two annual courses at
Stanford and is used remotely by an upper level IP proto-
cols course at Johns Hopkins University. The current con-

client
I |
STCP :

T __.,.-""F-

End Host Router

Figure 4: Full network stack and router developed
by students in our introductory network course us-
ing VNS

figuration has handled tens of students simultaneously and
hundreds of students in a quarter.

With VNS we have been able to organize the projects in
our introductory networking course so that by the end of
the quarter the students have developed a full networking
stack that can inter-operate with live hosts on the Inter-
net. The final project for the course requires the students
to piece together all of their previously completed program-
ming projects: Their ftp client application operates over
their TCP transport layer, from which packets are forwarded
through their own routers to connect to the Internet. The
VNS topology and components of the final project are shown
in figure 4.

Feedback from the students has been very positive. While
most admit that the projects are a lot of work, implementa-
tions typically range from 1,000 - 2,000 lines of code per
project, many find tremendous value in working directly
with real Internet traffic using standard protocols. In the
words of one student responding to a question on an anony-
mous, formal evaluation

“Yes, it greatly helped my understanding. I feel
that I could go work commercially on routers
now.”

We’ve had numerous requests from students after the quar-
ter is over to allow them to use VNS to experiment with
ideas of their own.

We have found that students’ experiences are greatly af-
fected by the transparency of the system. That is, a student
must have access to all possible paths that traffic might take
in order to debug their implementations. Providing pcap-
compatible dump files is very useful to the students and we
are continuing to explore other methods for providing debug
access to VNS at runtime.

5. CONCLUSIONSAND FUTURE WORK

VNS gives students the opportunity to process real Inter-
net traffic in user-space from anywhere in the Internet. Our
implementation of the VNS server is robust, and can sup-
port hundreds or thousands of students from remote schools,
with each student having their own private topology.

With support from the National Science Foundation, we
are prototyping a national center for internet infrastructure
teaching. Our lab setup has the necessary infrastructure,
including global IP space, network and server capacity to
support thousands of students simultaneously. The idea is
to offer full support, curriculum and supplemental source
code to institutions interested in using VNS. Technical de-
tails and complete assignment materials are posted on the
project website at http://yuba.stanford.edu/vns. We are
seeking to expand the number of courses that use VNS in
remote colleges and universities. We encourage any faculty
considering using the project to contact us directly by e-
mail.

6. ACKNOWLEDGMENTS

This work was funded by the NSF, grant 02-082. We
would like to thank Andreas Terzis of Johns Hopkins for
providing very helpful feedback and suggestions, Greg Wat-
son for general guru-ness and Guido Apenzeller and Vikram
Vijayaraghavan for help in designing, developing and debug-
ging the next generation virtual router system.

7. REFERENCES

[1] The ethereal network analyzer.
http://www.ethereal.com.

[2] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[3] Opnet network simulator. http://www.opnet.com.

[4] tcpdump network sniffer. http://www.tcpdump.org,.

[6] S. Akhtar, N. Al-Holou, M. Fienup, G. T. Finley,

R. S. Roos, and S. Tannouri. The networks course:
Old problems, new solutions. The proceedings of the
thirtieth SIGCSE technical symposium on Computer
science education, pages 360 — 361, 1999.

[6] I. B. Lewis Barnett. An ethernet performance
simulator for undergraduate networking. Proceedings
of the twenty-fourth SIGCSE technical symposium on
Computer science education, pages 145-150, 1993.

[7] N. W. Brad Richards. Illustrating networking concepts
with wireless handheld devices. Proceedings of the 7th
annual conference on Innovation and technology in
computer science educatio, pages 29-33, 2002.

[8] P. Dinda. The minet tcp/ip stack. Northwestern
University Department of Computer Science Technical
Report NWU-CS-02-08, January 2002.

[9] R. D. Enrico Carniani. The netwire emulator : a tool
for teaching and understanding networks. ACM
SIGCSE Bulletin, 33(3):1563-156, 2001.

[10] M. J. Jipping, A. Bugaj, L. Mihalkova, and D. E.
Porter. Using java to teach networking concepts with
a programmable network sniffer. Proceedings of the
34th SIGCSE technical symposium on Computer
science education, pages 120 — 124, 2003.

[11] L. E. Joseph D. Touch, Yu-Shun Wang. Virtual
internets for lab and class experiments. ISI-TR-563,
August 2002.

[12] B. Kneale and L. Box. A virtual learning environment
for real-world networking. Information Science,
page 71, June 2003.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM

Transactions on Computer Systems, 18(3):263 — 297,
August 2000.

J. M. Mayo and P. Kearns. A secure unrestricted
advanced systems laboratory. The proceedings of the
thirtieth SIGCSE technical symposium on Computer
science education, pages 165-169, 1999.

B. Richards. Rtp: A transport layer implementation
project. Proceedings of the sizth annual CCSC
northeastern conference on The journal of computing
in small colleges, pages 134 — 141, 2001.

J. Rickman, M. McDonald, G. McDonald, and

P. Heeler. Enhancing the computer networking
curriculim. Proceedings of the 6th annual conference
on Innovation and technology in computer science
education, pages 157-160, 2001.

[17]

18]

P. Steenkiste. A network project course based on
network processors. Proceedings of the 34th SIGCSE
technical symposium on Computer science education,
pages 262 — 266, 2003.

S. Yoo and S. Hovis. Remote access internetworking
laboratory. Proceedings of the 35th SIGCSE technical
symposium on Computer science education, pages
311-314, 2004.

