

- Worldwide cellular subscribers
 - 1993: 34 million
 - 2005: more than 2 billion
 - 2009: more than 4 billion
 - > landline subscribers

- Wireless adapters built into laptops, tablets, & phones
- More than 220,000 known
 WiFi locations in 134 countries
- Probably many, many more (e.g., home networks, corporate networks, ...)

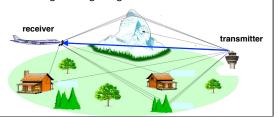
Wireless Links

Wireless Properties

- Interference / bit errors
 - More sources of corruption compared to wired
- Multipath propagation
 - Signal does not travel in a straight line
- · Broadcast medium
 - All traffic to everyone
- Power trade-offs
 - Important for power constrained devices

Wireless Links: High Bit Error Rate

- · Decreasing signal strength
 - Disperses as it travels greater distance
 - Attenuates as it passes through matter


Wireless Links: High Bit Error Rate

- Interference from other sources
 - Radio sources in same frequency band
 - E.g., 2.4 GHz wireless phone interferes with 802.11b wireless LAN
 - Electromagnetic noise (e.g., microwave oven)

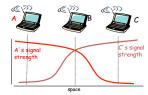
Wireless Links: High Bit Error Rate

- Multi-path propagation
 - Electromagnetic waves reflect off objects
 - Taking many paths of different lengths
 - Causing blurring of signal at the receiver

Dealing With Bit Errors

- · Wireless vs. wired links
 - Wired: most loss is due to congestion
 - Wireless: higher, time-varying bit-error rate
- · Dealing with high bit-error rates
 - Sender could increase transmission power
 - Requires more energy (bad for battery-powered hosts)
 - Creates more interference with other senders
 - Stronger error detection and recovery
 - More powerful error detection/correction codes
 - Link-layer retransmission of corrupted frames

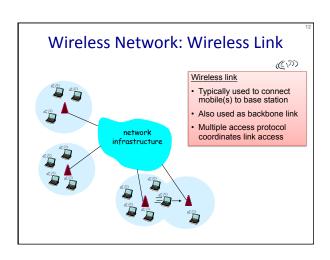
Wireless Links: Broadcast Limitations

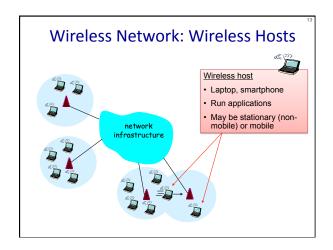

- · Wired broadcast links
 - E.g., Ethernet bridging, in wired LANs
 - All nodes receive transmissions from all other nodes
- Wireless broadcast: hidden terminal problem

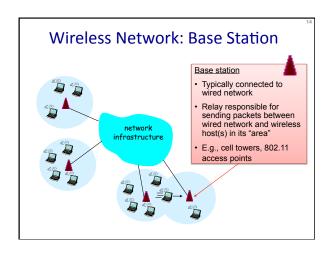
- A and B hear each other
- B and C hear each other
- But, A and C do not
- So, A and C are unaware of their interference at B

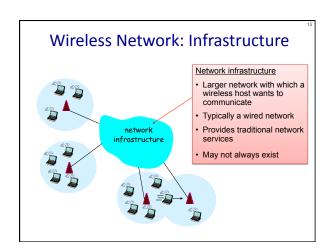
Wireless Links: Broadcast Limitations

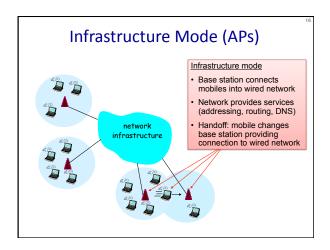
- · Wired broadcast links
 - E.g., Ethernet bridging, in wired LANs
 - All nodes receive transmissions from all other nodes
- Wireless broadcast: fading over distance

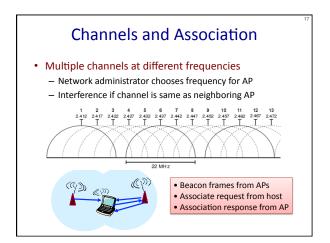


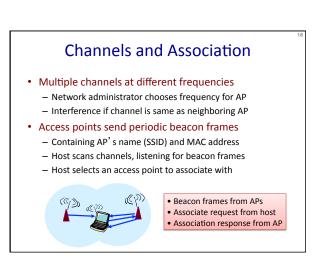

- A and B hear each other
- B and C hear each other
- But, A and C do not

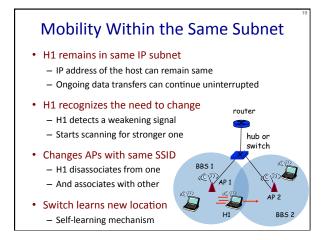

So, A and C are unaware of their interference at B

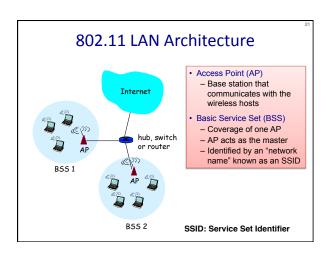

Example Wireless Link Technologies

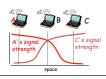

- · Data networks
 - 802.15.1 (Bluetooth): 2.1 Mbps 10 m
 - 802.11b (WiFi): 5-11 Mbps 100 m
 - 802.11a and g (WiFi): 54 Mbps 100 m
 - 802.11n (WiFi): 200 Mbps 100 m
 - 802.16 (WiMax): 70 Mbps 10 km
- Cellular networks, outdoors
 - 2G: 56 Kbps
 - 3G: 384 Kbps
 - 3G enhanced ("4G"): 4 Mbps
 - LTE





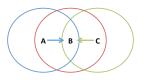





WiFi: 802.11 Wireless LANs

CSMA: Carrier Sense, Multiple Access · Multiple access: channel is shared medium

- - Station: wireless host or access point
 - Multiple stations may want to transmit at same time
- · Carrier sense: sense channel before sending
 - Station doesn't send when channel is busy
 - To prevent collisions with ongoing transfers
 - But, detecting ongoing transfers isn't always possible

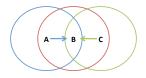

CA: Collision Avoidance, Not Detection

- · Collision detection in wired Ethernet
 - Station listens while transmitting
 - Detects collision with other transmission
 - Aborts transmission and tries sending again
- Problem #1: cannot detect all collisions
 - Hidden terminal problem
 - Fading

CA: Collision Avoidance, Not Detection

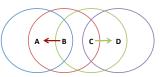
- Collision detection in wired Ethernet
 - Station listens while transmitting
 - Detects collision with other transmission
 - Aborts transmission and tries sending again
- Problem #1: cannot detect all collisions
 - Hidden terminal problem
 - Fading
- · Problem #2: listening while sending
 - Strength of received signal is much smaller
 - Expensive to build hardware that detects collisions
- So, 802.11 does collision avoidance, not detection

Hidden Terminal Problem



- A and C can't see each other, both send to B
- Occurs b/c 802.11 relies on physical carrier sensing, which is susceptible to hidden terminal problem

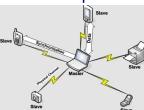
Virtual carrier sensing


- First exchange control frames before transmitting data
 - Sender issues "Request to Send" (RTS), incl. length of data
 - Receiver responds with "Clear to Send" (CTS)
- If sender sees CTS, transmits data (of specified length)
- If other node sees CTS, will idle for specified period
- If other node sees RTS but not CTS, free to send

Hidden Terminal Problem

- A and C can't see each other, both send to B
- RTS/CTS can help
 - Both A and C would send RTS that B would see first
 - B only responds with one CTS (say, echo' ing A's RTS)
 - C detects that CTS doesn't match and won't send

Exposed Terminal Problem


- . B sending to A, C wants to send to D
- As C receives B's packets, carrier sense would prevent it from sending to D, even though wouldn't interfere
- RTS/CTS can help
 - C hears RTS from B, but not CTS from A
 - C knows it's transmission will not interfere with A
 - C is safe to transmit to D

Impact on Higher-Layer Protocols

- · Wireless and mobility change path properties
 - Wireless: higher packet loss, not from congestion
 - Mobility: transient disruptions, and changes in RTT
- Logically, impact should be minimal ...
 - Best-effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- But, performance definitely is affected
 - TCP treats packet loss as a sign of congestion
 - TCP tries to estimate the RTT to drive retransmissions
 TCP does not perform well under out-of-order packets
- Internet not designed with these issues in mind

Bluetooth: 802.15.1 "personal-area-networks"

Bluetooth piconets

- Up to 7 "slave" devices and 225 "parked" devices
- Operates on unlicensed wireless spectrum
 - How to prevent interference?

PHY: Spread Spectrum – Frequency Hopping

- Nodes rapidly jump between frequencies
- Sender and receiver coordinated in jumps
 - How coordinate? Pseudorandom number generator, with shared input known to sender/receiver
- If randomly collide with other transmitted, only for short period before jump again
- Bluetooth
 - 79 frequencies, on each frequency for 625 microseconds
 - Each channel also uses TDMA, with each frame taking 1/3/5 consecutive slots.
 - Only master can start in odd slot, slave only in response

Ad-Hoc Networks

Ad hoc mode

- · No base stations
- Nodes can only transmit to other nodes within link coverage
- Nodes self-organize and route among themselves
- Can create multi-hop wireless networks, instead of a wired backend

Infrastructure vs. Ad Hoc

- · Infrastructure mode
 - Wireless hosts are associated with a base station
 - Traditional services provided by the connected network
 - E.g., address assignment, routing, and DNS resolution
- · Ad hoc networks
 - Wireless hosts have no infrastructure to connect to
 - Hosts themselves must provide network services
- · Similar in spirit to the difference between
 - Client-server communication
 - Peer-to-peer communication

Delay Tolerant Networking

- Nodes can both route and store
 - Next hop is available, forward
 - Otherwise, store packets
- · Useful for data collection with no time limit
 - e.g., sensors in the field
- Analogous to email
 - Hold onto packets until another hop can take it from you
 - Eventually reach its destination

The Upside to Interference

- Some systems leverage interference
- If packets collide once, likely will again
 - Can use both collisions to construct original packets
 - Reduce effective error rate significantly
- If two hosts send to each other through an AP, and they collide, AP can broadcast collision to both
 - Both know what they sent, can "subtract" that from collision to get the other
 - Improves throughput of system!

Conclusions

• Wireless

- Already a major way people connect to the Internet
- Gradually becoming more than just an access network

• Mobility (not discussed)

- Today's users tolerate disruptions as they move
 ... and applications try to hide the effects
 Tomorrow's users expect seamless mobility

• Challenges the design of network protocols

- Wireless breaks the abstraction of a link, and the assumption that packet loss implies congestion
- Mobility breaks association of address and location
 Higher-layer protocols don't perform as well

7