Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications

Xiaozhou Li
COS 461: Computer Networks (precept 04/06/12)
Princeton University

Background

* We studied P2P file sharing in class
— Napster
— Gnutella
— KazaA
— BitTorrent
* Today, let’s learn more!
— Chord: a scalable P2P lookup protocol
— CFS: a distributed file system built on top of Chord
— http://pdos.csail.mit.edu/chord

Review: distributed hash table

Distributed application

put(key, data) get (key) data

DHT provides the information look up service for P2P applications.
* Nodes uniformly distributed across key space

* Nodes form an overlay network

* Nodes maintain list of neighbors in routing table

* Decoupled from physical network topology

The lookup problem

Internet

Key = “beat it”
Value = MP3 data... Client
Publisher N4 . Lookup(“beat it”)

Centralized lookup (Napster)

N, 2
“« o
Setloc("beatit”, N4) Ny N3 Client
Publisher@ |\ DB Lookup(“beat it”)
Key = “beat it”
Value = MP3 data... N
Ng 8
N,
6

Simple, but O(N) state and a single point of failure

Flooded queries (Gnutella)

Lookup(“beat it”)

N, Ny~
(\—/ Ny—— Client

Publisher@ N4
Key = “beat it”
Value = MP3 data...

Ny

Robust, but worst case O(N) messages per lookup

Routed queries (Chord)

N, N,
~ N,
N Client
Publisher — * Lookup(“beat it”)
Key = “beat it” \ N,
Value = MP3 data... NG Ng
N9

Routing challenges

* Define a useful key nearness metric
* Keep the hop count small

* Keep the tables small

* Stay robust despite rapid change

* Chord: emphasizes efficiency and simplicity

Chord properties

* Efficient: O(/log(N)) messages per lookup
— N is the total number of servers

* Scalable: O(/og(N)) state per node
* Robust: survives massive failures

* Proofs are in paper / tech report
— Assuming no malicious participants

Chord overview

* Provides peer-to-peer hash lookup:
— Lookup(key) = return IP address
— Chord does not store the data
* How does Chord route lookups?
* How does Chord maintain routing tables?

Chord IDs

* Key identifier = SHA-1(key)
* Node identifier = SHA-1(IP address)
* Both are uniformly distributed

* Both exist in the same ID space

* How to map key IDs to node IDs?
— The heart of Chord protocol is “consistent hashing

”

Review: consistent hashing
for data partitioning and replication
1,0 »—hash(key1)

replication factor N=3

1/2
A key is stored at its successor: node with next higher ID >

Identifier to node mapping example

—

Node 8 maps [5,8] A E
Node 15 maps [9,15]
Node 20 maps [16, 20]

Node 4 maps [59, 4]

Each node maintains a
pointer to its successor E

Join Operation

Node with id=50 joins the E
. . succ=4

ring via node 15 pred=aa 4
Node 50: send join(50) to

node 15

Node 44: returns node 58
Node 50 updates its
successor to 58 E

succ=hB
pred=nil

50 58

B

succ=58
pred=35

E E lookup(37)

Each node maintains its
successor

Route packet (ID, data)

to the node
responsible for ID using
successor pointers E E
Periodic Stabilize
= Node 50: periodic pred=48
stabilize E

. stabilize(node=50)

= Sends stabilize notify(node=50)
message to 58

Node 50: send notify

message to 58 succ<58 E succ.pred=44
Update pred=44 pred=nil
T 50 15 E

suce=58 [
pred=35

Periodic Stabilize

succ=4 E
Node 44: periodic stabilize pred=50 E
Asks 58 for pred (50)

Node 44 updates its successor
to 50

g
>

s
§
3 stabilize(node=44)

suce=58 [l
pred=nil E
50 15 E

succ=58
pred=35

Periodic Stabilize

succ=4 g
pred=50 E

Node 44 has a new successor
(50)

Node 44 sends a notify
message to node 50

succ=58 [&
pred=nil

50

succ=50
pred=35

notify(node=44) 15 E

Periodic Stabilize Converges!

= This completes the e [B
joining operation!

succ=58 =
pred=44 ﬁ 50
succ=50 E 20 E

Achieving Efficiency: finger tables

Say m=7

Finger Table at 80 0
i ftli] (80+25) mod 27 =16
096 80 +25
196
2 96
3 96 i 80+24 E
4 96 80+23
5112 80+22
80 +21
6 20 BO+2:‘

ith entry at peer with id n is first peer with id >= n+ 2'(m0d2'”)‘

« Each node only stores O(log N) entries
* Each look up takes at most O(log N) hops

Achieving Robustness

* What if nodes FAIL?

* Ring robustness: each node maintains the k (> 1) immediate
successors instead of only one successor

— If smallest successor does no respond, substitute the second entry in its
successor list

— Unlikely all successors fail simultaneously

* Modifications to stabilize protocol (see paper!)

Example of Chord-based storage system

(" N D

Client j \ Server / \ Server

Cooperative File System (CFS)

Block storage
Availability / replication

Authénﬁcaﬁon DHash distributed
Cach!ng block store
Consistency

Server selection

Keyword search

Lookup } Chord

¢ Powerful lookup simplifies other mechanisms

Cooperative File System (cont.)

* Block storage

— Split each file into blocks and distribute those blocks
over many servers

— Balance the load of serving popular files
* Data replication

— Replicate each block on k servers

— Increase availability

— Reduce latency (fetch from the server with least
latency)

Cooperative File System (cont.)

Caching
— Caches blocks along the lookup path

— Avoid overloading servers that hold popular data

Load balance
— Different servers may have different capacities

— A real server may act as multiple virtual servers, by
being hashed to several different IDs.

Q&A

