

Basic Hash Function Modulo Simple for uniform data Data uniformly distributed over N. N >> n Hash fn = <data> mod n What if non-uniform? Typically split data into several blocks e.g., SHA-1 for cryptography

Data Partitioning Hashing approach Hash data ID to buckets Data stored on machine for the bucket Cost: O(# of buckets) Non-hashing, e.g., "Directory" Data can be stored anywhere

But... Basic hashing is not enough Map data onto k=10 servers with (dataID) mod k What if one server is down? Change to mod (k-1)? Need to shuffle the data!

Consistent Hashing Servers are also in the Key Space (uniformly) Red Nodes: Servers' positions in the key space Blue Nodes: Data's position in the key space Which Red Node to use: Clockwise closest

Maintenance cost: O(# of entries)

Another Important Problem How to quickly answer YES or NO? Is the website malicious? Is the data in the cache?

Properties We Desire Really really quick for YES or NO Okay for False Positive Say Yes, but actually No Never False Negative Say No, but actually Yes

Applying Basic Strategy Consider problem of data partition: Given document X, choose one of k servers to store it Modulo hashing Place X on server i = (X mod k) Problem? Data may not be uniformly distributed Place X on server i = (hash(X) mod k) Problem? What happens if a server fails or joins (k → k ±1)?

Use of Hashing

- Equal-Cost Multipath Routing
- Network Load Balancing
- P2P File Sharing
- Data Partitioning in Storage Services