3/29/12

Server Load Balancing

Precept 6 Balance load across servers

Normal techniques:
Round-robin?

Hashing & Partitioning

Peng Sun

Packets of a single connection spread

Balance load over multiple paths
over several servers

Round-robin?

Limitations of Round Robin Data Partitioning

Different RTT on paths Spread a large amount of data on
. multiple servers
Packet reordering

Random?

Very hard to retrieve

— > — —a<g




Goals in Distributing Traffic

Deterministic
Flow-level consistency
Easy to refrieve content from servers

Low cost
Very fast to compute/look up

Uniform load distribution

Basic Hash Function

Modulo
Simple for uniform data
Data uniformly distributed over N. N >> n
Hash fn = <data> mod n

What if non-uniform?
Typically split data into several blocks
e.g., SHA-1 for cryptography

Load Balancing with DSR

LB
X Server

Cluster

Switches
Reverse traffic doesn’t pass LB

Greater scalability

3/29/12

Hashing to the Rescue

Map items in one space into another
space in deterministic way

aleNal

Keys Function

Hashing for Server Load
Balancing

Load Balancing

Virtual IP / Dedicated IP Approach

One global-facing virtual IP for all servers
Hash clients’ network info (srcIP/port)
Direct Server Return (DSR)

Equal-Cost Multipath Routing

Balancing flows over multiple paths

Path selection via hashing
# of buckets = # of outgoing links
Hash network Info (src/dst IP) to links

ﬁ-@:



Data Partitioning

Hashing approach
Hash data ID to buckets
Data stored on machine for the bucket
Cost: O(# of buckets)

Non-hashing, e.g., “Directory”
Data can be stored anywhere
Maintenance cost: O(# of entries)

Consistent Hashing

Servers are also in the Key
Space (uniformly)

Red Nodes: Servers’ 7 : >
positions in the key space (

V4
\ |
Blue Nodes: Data’s position

N \ /
in the key space Q‘\a// 7
Which Red Node to use:

Clockwise closest

Another Important Problem

How to quickly answer YES or NO?
Is the website malicious?

Is the data in the cache?

3/29/12

But...

Basic hashing is not enough

Map data onto k=10 servers
with (datalD) mod k

What if one server is down?
Change to mod (k-1)?
Need to shuffle the data!

Features of Consistent
Hashing

Smoothness: Addition/removal of bucket
does not cause movement among existing
buckets (only immediate buckets)

Spread and load: Small set of buckets that
lie near object

Balanced: No bucket has disproportionate
number of objects

Properties We Desire

Really really quick for YES or NO

Okay for False Positive
Say Yes, but actually No

Never False Negative
Say No, but actudlly Yes



Bloom Filter

Membership Test: In or Not In

k independent hash functions for each
data

If all k spots are 1, the item is in.

{xy 2}
O[1[O[1[1[T][0O[O]OJO[O[T[O]1[O[O[1]O

Demo of Bloom Filter

Start with an m bit array, filled with Os.
To insert, hash each item k times. If H(x) = , set Array[a] = 1.
To check if y is in set, check array at H(y). All k values must be .

Possible to have a false positive: all k values are , but y is not in set.

3/29/12

Bloom Filter

Only use a few bits
Fast and memory-efficient

Never gives a false negative

Possible to have false positives

Application of Bloom Filter

Google Chrome uses BF:
First look whether website is malicious

Storage services (i.e., Apache
Cassandra)
Use BF to check cache hit/miss

Lots of other applications...



Hashing in P2P File Sharing

g " e

Two Layers: Ulirapeer and Leaf
Leaf sends hash table of content to Ultrapeer
Search request floods Ultrapeer network

Ultrapeer checks hash table to find leaf

Use of Hashing

Equal-Cost Multipath Routing
Network Load Balancing
P2P File Sharing

Data Partitioning in Storage Services

3/29/12

Applying Basic Strategy

Consider problem of data partition:

Given document X, choose one of k servers to store it

Modulo hashing

Place X on server i = (X mod k)
Problem? Data may not be uniformly distributed
Place X on server i = (hash(X) mod k)

Problem? What happens if a server fails or joins (k > k
$1)?



