HTTP

Reading: Section 9.1.2 and 9.4.3

COS 461: Computer Networks
Spring 2012

Outline

* HTTP overview
* Proxies
e Persistent HTTP

* HTTP caching

Application Layer Protocols

e Variable Headers vs. Fixed Headers

— App headers handled by program rather than
hardware

— Variable headers allow for incrementally adding
features

* Human Readable
— Easy for programmers to reason about
— Parsed by humans / programs rather than hardware

* More later on, but useful for understanding
HTTP’s design

HTTP Basics (Overview)

e HTTP layered over bidirectional byte stream
— Almost always TCP

* Interaction
— Client looks up host (DNS)
— Client sends request to server
— Server responds with data or error
— Requests/responses are encoded in text

* Stateless
— Server maintains no info about past client requests,

HTTP Request

request
line

H URL E

header
lines

*
[4
[

Entity Body

Ry

cr” is \r “1f” is \n

sp is ™ ™

HTTP Request

* Request line
— Method
* GET —return URI
* HEAD —return headers only of GET response
* POST - send data to the server (forms, etc.)
— URL (relative)
* E.g., /index.html
— HTTP version

HTTP Request (cont.)

* Request headers

— Variable length, human-readable

— Uses:
* Authorization — authentication info
* Acceptable document types/encodings
* From — user email
* If-Modified-Since
 Referrer — what caused this page to be requested
* User-Agent — client software

* Blank-line
* Body

HTTP Request Example

GET /index.htm| HTTP/1.1
Host: www.example.com

HTTP Request Example

GET /index.html HTTP/1.1

Host: www.example.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Connection: Keep-Alive

HTTP Response

Entity Body

HTTP Response

 Status-line
— HTTP version

— 3 digit response code

¢ 1XX — informational

¢ 2XX —success
— 200 OK

* 3XX —redirection
— 301 Moved Permanently
— 303 Moved Temporarily
— 304 Not Modified

* 4XX —client error
— 404 Not Found

* 5XX —server error
— 505 HTTP Version Not Supported

— Reason phrase n

HTTP Response (cont.)

* Headers
— Variable length, human-readable
— Uses:
Location - for redirection
Server — server software
WWW-Authenticate — request for authentication
Allow - list of methods supported (get, head, etc)
Content-Encoding - E.g x-gzip
Content-Length
Content-Type
Expires (caching)
Last-Modified (caching)

¢ Blank-line
* Body

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

How to Mark End of Message?

e Content-Length
— Must know size of transfer in advance
* Close connection
— Only server can do this
* Implied length
— E.g., 304 never have body content
* Transfer-Encoding: chunked (HTTP/1.1)

— After headers, each chunk is content length in hex,
CRLF, then body. Final chunk is length 0.

Example: Chunked Encoding

HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>

<CRLF>

25 <CRLF>

This is the data in the first chunk <CRLF>
1A <CRLF>

and this is the second one <CRLF>

0 <CRLF>

* Especially useful for dynamically-generated content, as
length is not a priori known

— Server would otherwise need to cache data until done generating,
and then go back and fill-in length header before transmitting

Outline

* HTTP overview

* Proxies

Persistent HTTP

HTTP caching

Proxies

* End host that acts a broker between client and
server
— Speaks to server on client’s behalf
* Why?
— Privacy
— Content filtering
— Can use caching (coming up)

Proxies (Cont.)

* Accept requests

from multiple origin
clients server

* Takes request
and reissues it to
server

* Takes response
and forwards to

client

client origin

server

Assignment 1

* Non-caching, HTTP 1.0 proxy
— Support only GET requests
* Multi-process
— Use fork()
Simple binary that takes a port number
—./proxy 12345 (proxy listens on port 12345)
Work in Firefox & Chrome
— Use settings to point browser to your proxy

Assignment 1 (Cont.)

What you need from a client request: host,
port, and URI path

— GET http:// :80/ HTTP/1.0

What you send to a remote server:
— GET / HTTP/1.0
Host: 180
Connection: close

Check request line and header format

Forward the response to the client

Assignment 1 (Cont.)

* Non-GET request?

— return “Not Implemented” (code 501)
* Unparseable request?

— return “Bad Request” (code 400)
e Use provided parsing library
Postel’s law

— Be liberal in what you accept, and conservative in what you send
— convert HTTP 1.1 request to HTTP 1.0

— convert \rto \r\n

— etc

Assignment 1 — Getting Started

Modify Assn 0 to have server respond
— Simple echo of what client sent

Modify Assn 0 to handle concurrent clients
— Use fork()

Create “proxy” server

— Simply “repeats” client msg to a server, and
“repeats” server msg back

Client sends HTTP requests, proxy parses

Advice

* Networking is hard

— Hard to know what’s going on in network layers
— Start out simple, test often

e Build in steps

— Incrementally add pieces
— Make sure they work

— Will help reduce the effect of “incomplete”
information

Outline

HTTP overview
Proxies
Persistent HTTP

HTTP caching

Problems with simple model

Simple model
— request one object a time, sequentially

Multiple connection setups
— Connection setup for each item (imgs, js, etc)

Short transfers are hard on TCP

Lots of extra connections
— Increases server state/processing

Persistent HTTP

* Reuse connection

— Request header “Connection: Keep-Alive”

— Reduces # of connection setups

¢ Benefits

— Reduces server overhead

— Reduces latency (i.e., faster page loads)

— Allows pipelining

Pipelining

Issue multiple requests at a time
— Don’t have to wait for previous response
— More efficient use of link

Use carefully

— POST requests should not be pipelined (changes
server state)

— GET/HEAD requests are usually okay

Persistent HTTP

Non-persistent HTTP issues:

Persistent without pipelining:

* Connection setup for each
request

* But browsers often open
parallel connections

Persistent HTTP:

« Server leaves connection
open after sending response

* Subsequent HTTP messages
between same client/server
are sent over connection

Client issues new request only
when previous response has
been received

One RTT for each object

Persistent with pipelining:

Default in HTTP/1.1 spec
Client sends multiple requests
As little as one RTT for all the
referenced objects

Server must handle responses
in same order as requests

“Persistent without pipelining”
most common

When does pipelining work best?
— Small objects, equal time to serve each object

— Small because pipelining simply removes additional 1 RTT
delay to request new content

Alternative design?

— Multiple parallel connections (typically 2-4). Also allows
parallelism at server

— Doesn’ t have problem of head-of-line blocking like pipelining

« Dynamic content makes HOL blocking possibility worse

In practice, many servers don’ t support, and many
browsers do not default to pipelining

Outline

* HTTP overview

* Proxies

Persistent HTTP

* HTTP caching

HTTP Caching

* Why cache?
— Lot of objects don’t change (images, js, css)
— Reduce # of client connections
— Reduce server load
— Reduce overall network traffic; save $$$

Caching is Hard

« Significant fraction (>50%?) of HTTP objects uncachable
— Dynamic data: Stock prices, scores, web cams
— CGl scripts: results based on passed parameters
— Cookies: results may be based on passed data
— SSL: encrypted data is not cacheable
— Advertising / analytics: owner wants to measure # hits
* Random strings in content to ensure unique counting

* Want to limit staleness of cached objects

Validating Cached Objects

* Timestamps
— Server hints when an object “expires” (Expires: xxx)

— Server provides last modified date, client can check
if that’s still valid

— Why the server’s timestamp?
* Problems
— Server replicas won’t agree on time

— Objects may go back to previous value, and using
time will have you redownload the object

* There are other ways (look up ETags)

Example Cache Check Request

GET /HTTP/1.1

Accept-Language: en-us

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com

Connection: Keep-Alive

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

Web Proxy Caches

* User configures browser: origin
server

Web accesses via cache ,‘

* Browser sends all HTTP
requests to cache

— Object in cache: cache
returns object

— Else: cache requests

. - client
object from origin, origin

server

then returns to client

Summary

HTTP: Simple text-based file exchange protocol

— Support for status/error responses, authentication, client-
side state maintenance, cache maintenance

How to improve performance
— Persistent connections

— Pipelining

— Proxies

— Caching

