C, OpenFlow

Software Defined Networking

Jennifer Rexford

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

The Internet: A Remarkable Story

* Tremendous success

— From research experiment
to global infrastructure

Brilliance of under-specifying

— Network: best-effort packet delivery
— Hosts: arbitrary applications
* Enables innovation in applications
— Web, P2P, VolP, social networks, virtual worlds

* But, change is easy only at the edge... ®

Inside the ‘Net: A Different Story...

e Closed equipment

— Software bundled with hardware
=

— Vendor-specific interfaces
* Over specified

— Slow protocol standardization ‘é‘
* Few people can innovate

— Equipment vendors write the code
— Long delays to introduce new features

Impacts performance, security, reliability, cost...

Networks are Hard to Manage

* Operating a network is expensive s
— More than half the cost of a network
— Yet, operator error causes most outages
* Buggy software in the equipment

— Routers with 20+ million lines of code

— Cascading failures, vulnerabilities, etc.
* The network is “in the way”

— Especially a problem in data centers A9

— ... and home networks

Creating Foundation for Networking

* A domain, not (yet?) a discipline
— Alphabet soup of protocols
— Header formats, bit twiddling
— Preoccupation with artifacts
* From practice, to principles
— Intellectual foundation for networking
— Identify the key abstractions
— ... and support them efficiently
* To build networks worthy of society’s trust

Rethinking the “Division of Labor”

Traditional Computer Networks

//——Ea_'ffrr—//*fy——ﬁ\\
— (=
Data plane: "=
Packet tﬁ)/
streaming — @ o
—

Forward, filter, buffer, mark,
rate-limit, and measure packets

Traditional Computer Networks

Control plane:
Distributed algorithms

Track topology changes, compute
routes, install forwarding rules

Traditional Computer Networks

Management plane: =4 @
. \ 14
Human time scale 3
/"F;%"L_,

Collect measurements and
configure the equipment

Death to the Control Plane!

* Simpler management
— No need to “invert” control-plane operations
* Faster pace of innovation
— Less dependence on vendors and standards
 Easier interoperability
— Compatibility only in “wire” protocols
* Simpler, cheaper equipment
— Minimal software

=

Software Defined Networking (SDN)

Logically-centralized control

Y R - API to the data plane
Yo “~~__(e.g., OpenFlow)

N
\ \ N -

TN

\\ Dumb,

@ fast
aﬂwtc es

OpenFlow Networks

Data-Plane: Simple Packet Handling
€V Openiiow

— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns

* Simple packet-handling rules
— Pattern: match packet header bits

— Counters: #bytes and #packets
_’

1. src=1.2.*.*, dest=3.4.5.* - drop
2. src=**** dest=3.4.*.* 2 forward(2)
3. src=10.1.2.3, dest=*.*.*.* > send to controller

Unifies Different Kinds of Boxes

* Router

— Match: longest
destination IP prefix

— Action: forward out a
link
e Switch

— Match: destination MAC
address

— Action: forward or flood

Firewall

— Match: IP addresses and
TCP/UDP port numbers

— Action: permit or deny
NAT

— Match: IP address and
port

— Action: rewrite address
and port

Controller: Programmability

Controller Application

S—

V)

Events from switches
Topology changes,
Traffic statistics,
Arriving packets

Commands to switches
(Un)install rules,
Query statistics,

Send packets

Example OpenFlow Applications

* Dynamic access control

* Seamless mobility/migration

* Server load balancing
* Network virtualization

* Using multiple wireless access points

* Energy-efficient networking

Adaptive traffic monitoring
Denial-of-Service attack detection

See http:/www.openflow.org/videos/

E.g.: Dynamic Access Control

* Inspect first packet of a connection
* Consult the access control policy

* Install rules to block or route traffic

E.g.: Seamless Mobility/Migration

* See host send traffic at new location
* Modify rules to reroute the traffic

E.g.: Server Load Balancing

* Pre-install load-balancing policy
 Split traffic based on source IP

OpenFlow in the Wild

* Open Networking Foundation

— Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche
Telekom, and many other companies

* Commercial OpenFlow switches
— HP, NEC, Quanta, Dell, IBM, Juniper, ...
* Network operating systems
— NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic
* Network deployments
— Eight campuses, and two research backbone networks
— Commercial deployments (e.g., Google backbone)

Mainframes

Specialized

Applications —Open Interface—

mororu

——Open Interface—

. Microprocessor
p.
LY

Horizontal
Open interfaces
Rapid innovation
Huge industry

Specialized
Operating
System

Specialized
Hardware

Vertically integrated
Closed, proprietary
Slow innovation
Small industry

xd3085000000

E.g.: Network Virtualization

Controller #1 Controller #2 Controller #3

Partition the space of packet headers

22

A Helpful Analogy

From Nick McKeown'’s talk “Making
SDN Work” at the Open Networking
Summit, April 2012

Routers/Switches

e L

Specialized —Open Interface—

Features
Control or Control or
Speuallzed Plane Plane P
Control

——Open Interface—

Plane j
Speclallzed -
Hardware =

Merchant

Switching Chips

Vertically integrated
Closed, proprietary
Slow innovation

Horizontal
Open interfaces
Rapid innovation

=

20

25

Challenges

27

Controller Delay and Overhead

* Controller is much slower the the switch
* Processing packets leads to delay and overhead
* Need to keep most packets in the “fast path”

HEN
packets -F

29

Testing and Debugging

* OpenFlow makes programming possible
— Network-wide view at controller
— Direct control over data plane

* Plenty of room for bugs

— Still a complex, distributed system

Need for testing techniques

— Controller applications

— Controller and switches

— Rules installed in the switches

26

Heterogeneous Switches

* Number of packet-handling rules

* Range of matches and actions

* Multi-stage pipeline of packet processing

* Offload some control-plane functionality (?)

access
control

IP
look-up

[] S look-up B

28

Distributed Controller

For scalability
Controller and reliability Controller

Application Application

Partition and replicate state

30

Programming Abstractions

e Controller APIs are low-level
— Thin veneer on the underlying hardware

* Need better languages Controller
— Composition of modules I'
— Managing concurrency —;
— Querying network state

— Network-wide abstractions _.’ AN

7y —

Switches

* Ongoing at Princeton
— http://www.frenetic-lang.org/

Conclusion

* Rethinking networking
— Open interfaces to the data plane
— Separation of control and data
— Leveraging techniques from distributed systems
* Significant momentum
— In both research and industry
* Next time
— Closing lecture
— No precept this week

31

