

Software Defined Networking

Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

The Internet: A Remarkable Story

- Tremendous success
 - From research experiment to global infrastructure
- · Brilliance of under-specifying
 - Network: best-effort packet delivery
 - Hosts: arbitrary applications
- Enables innovation in applications
 - Web, P2P, VoIP, social networks, virtual worlds
- But, change is easy only at the edge... 🗇

Inside the 'Net: A Different Story...

- · Closed equipment
 - Software bundled with hardware
 - Vendor-specific interfaces
- Over specified
 - Slow protocol standardization
- Few people can innovate
 - Equipment vendors write the code
 - Long delays to introduce new features

Impacts performance, security, reliability, cost...

Networks are Hard to Manage

- · Operating a network is expensive
 - More than half the cost of a network
 - Yet, operator error causes most outages
- Buggy software in the equipment
 - Routers with 20+ million lines of code
 - Cascading failures, vulnerabilities, etc.
- The network is "in the way"
 - Especially a problem in data centers
 - ... and home networks

Creating Foundation for Networking

- A domain, not (yet?) a discipline
 - Alphabet soup of protocols
 - Header formats, bit twiddling
 - Preoccupation with artifacts
- From practice, to principles
 - Intellectual foundation for networking
 - Identify the key abstractions
 - ... and support them efficiently
- To build networks worthy of society's trust

Rethinking the "Division of Labor"

Death to the Control Plane!

- Simpler management
 - No need to "invert" control-plane operations
- Faster pace of innovation
 - Less dependence on vendors and standards
- · Easier interoperability
 - Compatibility only in "wire" protocols
- Simpler, cheaper equipment
 - Minimal software

OpenFlow Networks

Data-Plane: Simple Packet Handling

- Simple packet-handling rules
- **OpenFlow**
- Pattern: match packet header bits
- Actions: drop, forward, modify, send to controller
- Priority: disambiguate overlapping patterns
- Counters: #bytes and #packets

- 1. src=1.2.*.*, dest=3.4.5.* → drop
- 2. src = *.*.*, dest=3.4.*.* → forward(2)
- 3. src=10.1.2.3, dest=*.*.*.* → send to controller

Unifies Different Kinds of Boxes

- Router
 - Match: longest destination IP prefix
 - Action: forward out a link
- Switch
 - Match: destination MAC address
 - Action: forward or flood

- Firewall
 - Match: IP addresses and TCP/UDP port numbers
 - Action: permit or deny
- NAT
 - Match: IP address and port
 - Action: rewrite address and port

Example OpenFlow Applications

- Dynamic access control
- · Seamless mobility/migration
- · Server load balancing
- Network virtualization
- · Using multiple wireless access points
- Energy-efficient networking
- · Adaptive traffic monitoring
- Denial-of-Service attack detection

See http://www.openflow.org/videos/

OpenFlow in the Wild

- Open Networking Foundation
 - Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom, and many other companies
- · Commercial OpenFlow switches
 - HP, NEC, Quanta, Dell, IBM, Juniper, ...
- · Network operating systems
 - NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic
- · Network deployments
 - Eight campuses, and two research backbone networks
 - Commercial deployments (e.g., Google backbone)

A Helpful Analogy

From Nick McKeown's talk "Making SDN Work" at the Open Networking Summit, April 2012

Challenges

Heterogeneous Switches Number of packet-handling rules Range of matches and actions Multi-stage pipeline of packet processing Offload some control-plane functionality (?)

Testing and Debugging

- OpenFlow makes programming possible
 - Network-wide view at controller
 - Direct control over data plane
- Plenty of room for bugs
 - Still a complex, distributed system
- · Need for testing techniques
 - Controller applications
 - Controller and switches
 - Rules installed in the switches

Programming Abstractions • Controller APIs are low-level - Thin veneer on the underlying hardware • Need better languages - Composition of modules - Managing concurrency - Querying network state - Network-wide abstractions • Ongoing at Princeton - http://www.frenetic-lang.org/

Conclusion

- Rethinking networking
 - Open interfaces to the data plane
 - Separation of control and data
 - Leveraging techniques from distributed systems
- Significant momentum
 - In both research and industry
- Next time
 - Closing lecture
 - No precept this week