

Beyond Ethernet Switching

Scalability Limitations of Ethernet

- · Spanning tree
 - Paths that are longer than necessary
 - Bandwidth wasted for links not in the tree
- · Forwarding tables
 - Bridge tables grow with number of hosts
- Broadcast traffic
 - ARP, DHCP, and broadcast applications
- Flooding
 - Frames sent to unknown destinations

Virtual Local Area Networks

10

Early Days of Ethernet LANs

- Thick cables snaked through cable ducts
 Every computer they passed was plugged in
- All people in adjacent offices on the same LAN
 Whether they belonged together or not
- Users grouped based on physical layout
 Rather than organizational structure
- Security, privacy, and scalability limitations...

Today's Ethernet LANs

- Changes introduced by hubs and switches
 - Every office connected to central wiring closets
 - Often multiple LANs (k hubs) connected by switches
 - Flexibility in mapping offices to different LANs
- Can group by organizational structure
 - Better privacy: snooping in promiscuous mode
 - Separate IP addresses: one IP subnet per LAN
 - Better security: access control at IP routers
 - Better load management: isolate broadcast/flooding

People Move, and Roles Change

- · Organizational changes are frequent
 - E.g., faculty office becomes a grad-student office
 - E.g., graduate student becomes a faculty member
- Physical rewiring is a major pain
 - Requires unplugging the cable from one port
 - ... and plugging it into another
 - ... and hoping the cable is long enough to reach
- Would like to "rewire" the building in software
 - The resulting concept is a Virtual LAN (VLAN)

12

Making VLANs Work

- Changing the Ethernet header
 - Adding a field for a VLAN tag
 - Implemented on the bridges/switches
 - ... but can still interoperate with old Ethernet cards
- Bridges/switches trunk links
 - Saying which VLANs are accessible via which interfaces
- · Approaches to mapping access links to VLANs
 - Each interface has a VLAN color
 - Each MAC address has a VLAN color

1.1

Uses of VLANs (See the Survey Paper)

- Scoping broadcast traffic
- · Simplifying access control policies
- Decentralizing network management
- · Enabling host mobility

15

Problem: Limited Granularity

- · Limited number of VLANs
 - Placing multiple groups in the same VLAN
 - Reusing limited VLAN
- · Limited number of hosts per VLAN
 - Divide a large group into multiple VLANs
- · One VLAN per access port
 - Supporting VLANs on the end host
 - Supporting multiple groups at the router

16

Problem: Complex Configuration

- Host address assignment
 - Wasting IP addresses
 - Complex host address assignment
- Spanning tree computation
 - Limitation of automated trunk configuration
 - Enabling extra links to survive failures
 - Distributing load over the root bridges

Open question: can we do better than VLANs?

17

Multiple Internet Connections

Motivation for Multi-Homing • Benefits of multi-homing - Extra reliability, e.g., survive single ISP failure - Financial leverage through competition - Better performance by selecting better path - Gaming the 95th-percentile billing model

Challenges

- Challenges of interconnecting multiple sites
 - Performance
 - Reliability
 - Security
 - Privacy
- Solutions
 - Connecting via the Internet using secure tunnels
 - Virtual Private Network (VPN) service
 - Dedicated backbone between sites

22

• Each site connects to the Internet - Encrypted tunnel between each pair of sites - Packet filtering to block unwanted traffic - But, no performance or reliability guarantees

Virtual Private Network (VPN)

- Each site connects to a common VPN provider
 - Provider allows each site to announce IP prefixes
 - Separate routing/forwarding table for each customer
 - Performance guarantees

Middleboxes

26

Enterprise Internet Connection

- · Multiple middleboxes
 - Intrusion prevention system
 - Network address translator
 - Firewall
 - Traffic shaper
- · Handling bad internal users
 - Filtering IP packets with spoofed source IP addresses
 - Logging which MAC address has each IP address

Internal Middleboxes

- · Network divided into regions
 - E.g., departments within a campus
 - E.g., public computers (servers, WiFi) vs. private
- Network divided by roles
 - E.g., human resources vs. engineering
 - E.g., faculty vs. students
- Sometimes physically separate networks
 - E.g., ATM machines, campus safety, media streaming

28

Princeton Campus Network

http://www.net.princeton.edu/index.html http://www.net.princeton.edu/statistics/ http://www.net.princeton.edu/whatsnew.html

29

Internet Connections

- Two commercial ISPs: Comcast and WindStream
- Two research networks: ESnet and Internet2
- Non-profits: McCarter Theater, Princeton Public Library, and Princeton Regional Schools

Three Internal Networks

- Campus Data Network
 - Connects dorms, academic and administrative buildings, campus WiFi, etc.
- · Princeton Private Network
 - Environmental systems, power, security cameras, building locks
- VoIP Network
 - VoIP phones in data center, chemistry, neuroscience, Forrestal campus, and all new construction
 - Separate for disaster recovery & traffic management

32

Data Center (Forrestal Campus)

- 40,000 square feet with 1800 computers
- · Multiple tiers of backup power
- Minimizes energy for cooling and power

. .

Virtual Private Network (VPN)

- Online campus resources
 - E.g., some Princeton University library resources
 - Not available from outside of campus
- External resources with Princeton subscription
 - E.g., digital libraries from ACM and IEEE
 - Accessible from a Princeton IP address
- Princeton VPN service (vpn.princeton.edu)
 - Secure network connection layered over IP network
 - ... connects you to an internal Princeton machine

35

Aruba WiFi Access Points

- Adaptive radio management
 - Automatically assigns channel and power settings
 - Channel load balancing to distribute clients
 - Coverage hole detection

WiFi Anecdote (puwireless)

- Single large VLAN
 - Enabling seamless mobility on campus
- Limited address space
 - -16K or 32K IP addresses
 - -3 hour DHCP leases
- Frequently a large number of users
 - -Several thousand to up to 10,000
 - -... may soon run low on IP addresses

37

WiFi Anecdote (puwireless), Continued

- Bug in Android and IOS smart phones
 - Don't release DHCP lease on IP addresses
 - Offloads ARP processing to the chipset, to avoid waking up sleeping device on ARP requests
 - ... but DHCP timeout is handled by the processor
- So, can have IP address collisions
 - DHCP lease expires, but the phone doesn't know
 - DHCP server gives the IP address to someone else
 - ... and both devices respond to ARP requests!

http://www.net.princeton.edu/android/android-stops-renewing-lease-keeps-using-IP-address-11236.html

WiFi Anecdote (puwireless), Continued

- · Working with Google and Apple on the problem
- Longer-term solution
 - Move to larger, private address block (10.0.0.0/8)
 - Use network address translation (NAT) to communicate with the public Internet
- Benefits
 - Avoids running out of IP addresses
 - Introduces long delay before reusing an address
 - Seems like a good solution, right?

39

WiFi Anecdote (puwireless), Continued

- · Solution makes troubleshooting harder
 - Public IP addresses shared by many users
 - ... due to network address translation
- Example: DMCA violations
 - Student downloads copyrighted material on WiFi
 - Company comes to Princeton to complain
- Given IP address, can OIT identify the student?
 - With NAT, cannot pinpoint a unique MAC address
 - ... without much more detailed (flow-level) logs

40

Conclusions

- Enterprise networks
 - Campuses and companies
 - Access to local services and the Internet
- Challenges
 - IP address limitations
 - Hybrid switch and routed network
 - Load balancing over upstream ISPs
 - Protecting users and the Internet from each other
- · Next time: data-center networks